Abstract:Polymer insulation materials such as epoxy resins generate micro-scale damage under long-term electrical-thermal aging and mechanical stress, which induces insulation failure and seriously threatens equipment operation safety. Microcapsule technology realizes the independent repair of micro-scale damage of insulating materials, however, most of the existing microcapsule self-repairing technology adopts liquid repairing agent, which has the problems of irreversible curing and only single repairing, and also needs a strong external force to be triggered passively. In this paper, microcapsules with magnetic field targeting effect composed of the phase change material octacosane ware prepared by using Fe3O4@SiO2 nanoparticles as Pickering emulsion stabilizers, which were composited with normal temperature curing epoxy resin to form an insulating material with self-repair function. The solid-liquid transformation of the phase change material octacosane repair agent is reversible, which gives the composite material the property of being able to be repaired repeatedly. Ultrafine Fe3O4@SiO2 nanoparticles were used as the oil-in-water emulsifier. During the formation of phase change microcapsules, Fe3O4@SiO2 nanoparticles were at the junction of water and oil (melted eicosanoids), and when the eicosanoids were cooled down to room temperature, the Fe3O4@SiO2 nanoparticles were wrapped around and embedded in the outer surface of solid eicosanoids, thus forming phase change microcapsules. The Fe3O4@SiO2 nanoparticles embedded on the surface of the solid eicosanoids reparative material have the dual functions of targeted migration in response to a directional magnetic field and focused infrared targeted heating, which can attract the microcapsules to the damage-prone parts of the composite material under the action of a directional magnetic field. At the same time, an appropriate amount of silane coupling agent-modified Al2O3 nanoparticles were introduced into the epoxy resin matrix to enhance the thermal conductivity and insulation strength of the composite material. When microdamage was generated, focused infrared light was applied artificially and conveniently under charged conditions to target heating of the microcapsules, which induced the phase change microcapsules in the damaged area to melt and flowed out rapidly to fill the damaged channels. Upon cooling and solidification, the material realized autonomous repair. In this paper, the microstructure and thermal stability of the microcapsules and the insulating and thermal conductivity of microcapsules/nano-Al2O3/epoxy composites were experimentally investigated, and finally the self-repairing performance of the composite insulating material was tested on the surface of the mechanical scratch damage to verify the self-repairing characteristics of the composite material. The following conclusions can be reached from test analysis: (1) The particle size of the microcapsules is uniformly distributed, and the cumulative 80% frequency range is concentrated in 50.02~138.56 μm. Additionally,they maintain stability and do not decompose thermally below 200℃. (2) The magnetic targeting induction technology can improve the self-repairing efficiency of the material and reduce the doping amount of the microcapsules, so as to maintain the good intrinsic performance of the substrate; The doping of nano-Al2O3 particles endows the composite material with excellent thermal response characteristics for targeted infrared radiation heating. (3) The relative dielectric constant of the 2% microcapsules/1% Al2O3/EP composites is approximately equal to that of the pure epoxy resin, and the dielectric strength has been improved by 2.32%. The composites are capable of repairing mechanical scratch damage autonomously, and can fully fill the scratch damage channels on the material surface. The insulation strength can be restored to 90.78% of the undamaged one.
[1] 刘贺晨, 孙章林, 刘云鹏, 等. 基于酯交换的可回收类玻璃化环氧树脂制备与性能研究[J]. 电工技术学报, 2023, 38(15): 4019-4029. Liu Hechen, Sun Zhanglin, Liu Yunpeng, et al.Preparation and properties of recyclable vitrified epoxy resin based on transesterification[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4019-4029. [2] 蒋起航, 王威望, 钟禹, 等. 环氧树脂高频松弛的交流电导与双极性方波击穿特性[J]. 电工技术学报, 2024, 39(4): 1159-1171. Jiang Qihang, Wang Weiwang, Zhong Yu, et al.AC conductivity with high frequency relaxation and breakdown characteristics of epoxy resin under bipolar square wave voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1159-1171. [3] 伍云健, 丁大霖, 林慧, 等. 基于动态双硫键的本征自修复环氧绝缘材料性能研究[J]. 电工技术学报, 2024, 39(3): 836-843. Wu Yunjian, Ding Dalin, Lin Hui, et al.Properties of intrinsic self-healing epoxy insulating materials based on dynamic disulfide bond[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 836-843. [4] Sima Wenxia, Yang Yuhang, Sun Potao, et al.Self-reporting microsensors inspired by noctiluca scin-tillans for small-defect positioning and electrical-stress visualization in polymers[J]. Advanced Materials, 2024, 36(24): e2313254. [5] 王有元, 王施又, 黄炎光, 等. 干式变压器环氧树脂热老化特性研究[J]. 高电压技术, 2018, 44(1): 187-194. Wang Youyuan, Wang Shiyou, Huang Yanguang, et al.Study on thermal aging characteristics of epoxy resin of dry-type transformer[J]. High Voltage Engineering, 2018, 44(1): 187-194. [6] 孙文杰, 张磊, 毛佳乐, 等. 电力设备绝缘损伤形式及自修复材料研究进展[J]. 电工技术学报, 2022, 37(8): 2107-2116. Sun Wenjie, Zhang Lei, Mao Jiale, et al.Types of insulation damage and self-healing materials of power equipment: a review[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2107-2116. [7] 张莹, 宋慧欣, 王冬梅, 等. 机械应力影响环氧树脂绝缘电树枝劣化研究进展[J]. 高压电器, 2024, 60(4): 24-32. Zhang Ying, Song Huixin, Wang Dongmei, et al.Research progress on influence of mechanical stress on electrical tree deterioration of epoxy resin insulation[J]. High Voltage Apparatus, 2024, 60(4): 24-32. [8] Sima Wenxia, Tang Xinyu, Sun Potao, et al.Nondestructive 3D imaging of microscale damage inside polymers-based on the discovery of self-excited fluorescence effect induced by electrical field[J]. Advanced Science, 2023, 10(25): e2302262. [9] 杜伯学, 姚航, 梁虎成, 等. 时变温差工况下直流GIL/GIS盆式绝缘子动态电场畸变抑制[J]. 电工技术学报, 2024, 39(9): 2851-2859. Du Boxue, Yao Hang, Liang Hucheng, et al.Electric field relaxation of basin spacer under variable temperature gradient in DC-GIL/GIS[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2851-2859. [10] 姚璇, 南振乐, 杜文娟, 等. ±550kV直流气体绝缘金属封闭开关设备长期带电试验研究[J]. 电气技术, 2024, 25(3): 46-52. Yao Xuan, Nan Zhenle, Du Wenjuan, et al.Study on long-term live test for ±550kV DC gas insulated switchgear[J]. Electrical Engineering, 2024, 25(3): 46-52. [11] Xiao Meng, Du Boxue.Review of high thermal conductivity polymer dielectrics for electrical insulation[J]. High Voltage, 2016, 1(1): 34-42. [12] Dehlinger N, Stone G.Surface partial discharge in hydrogenerator stator windings: causes, symptoms, and remedies[J]. IEEE Electrical Insulation Magazine, 2020, 36(3): 7-18. [13] Saxén C, Gamstedt E K, Afshar R, et al.A micro-computed tomography investigation of the breakdown paths in mica/epoxy machine insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1553-1559. [14] Takahashi T, Okamoto T, Ohki Y, et al.Breakdown strength at the interface between epoxy resin and silicone rubber-a basic study for the development of all solid insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 719-724. [15] White S R, Sottos N R, Geubelle P H, et al.Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797. [16] 梁琛, 司马文霞, 孙魄韬, 等. 单组分光敏微胶囊/纳米SiO2/环氧树脂复合绝缘介质的自修复特性[J]. 电工技术学报, 2022, 37(6): 1564-1571. Liang Chen, Sima Wenxia, Sun Potao, et al.Self-healing property of one-component photosensitive microcapsule/nano-SiO2/epoxy composite dielectric[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1564-1571. [17] Xie Jiaye, Gao Lei, Hu Jun, et al.Self-healing of electrical damage in thermoset polymers via anionic polymerization[J]. Journal of Materials Chemistry C, 2020, 8(18): 6025-6033. [18] 张艳芳, 王有元, 郑荣亮. 自修复环氧树脂中防收缩固化微胶囊芯材的选择[J]. 中国电机工程学报, 2022, 42(4): 1252-1260. Zhang Yanfang, Wang Youyuan, Zheng Rongliang.Election of anti-shrinkage curing microcapsule core material in self-healing epoxy resin[J]. Proceedings of the CSEE, 2022, 42(4): 1252-1260. [19] Jin Henghua, Mangun C L, Griffin A S, et al.Thermally stable autonomic healing in epoxy using a dual-microcapsule system[J]. Advanced Materials, 2014, 26(2): 282-287. [20] Wu Kaiyun, Chen Yaxin, Luo Jing, et al.Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency[J]. Journal of Colloid and Interface Science, 2021, 600: 660-669. [21] Caruso M M, Blaiszik B J, Jin Henghua, et al.Robust, double-walled microcapsules for self-healing poly-meric materials[J]. ACS Applied Materials & Interfaces, 2010, 2(4): 1195-1199. [22] Dong Biqin, Fang Guohao, Wang Yanshuai, et al.Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system[J]. Cement and Concrete Composites, 2017, 78: 84-96. [23] Gao Lei, Yang Yang, Xie Jiaye, et al.Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence[J]. Matter, 2020, 2(2): 451-463. [24] Zhang Ying, Liu Qichang, Wang Mingwei, et al.Natural light-triggered microcapsules for non-contact and autonomous healing of surface damages on insulating materials[J]. Journal of Applied Polymer Science, 2024, 141(44): e56168. [25] 罗东琴. 响应型乳液构建及其在制备功能材料方面的应用[D]. 淄博: 山东理工大学, 2021. Luo Dongqin.Construction of responsive emulsion and its application in the preparation of functional materials[D]. Zibo: Shandong University of Technology, 2021. [26] 万洋, 余剑英, 何鹏, 等. 基于微波加热的热膨胀微球/石蜡/石墨自修复功能材料的制备及其在砂浆中的应用[J]. 硅酸盐通报, 2022, 41(3): 757-765. Wan Yang, Yu Jianying, He Peng, et al.Preparation of thermally expandable microspheres/paraffin/ graphite self-healing functional material based on microwave heating and its application in mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 757-765. [27] Li Caifu, Liu Qian, Mei Zhen, et al.Pickering emulsions stabilized by paraffin wax and Laponite clay particles[J]. Journal of Colloid and Interface Science, 2009, 336(1): 314-321. [28] Sun Potao, Zhao Mingke, Sima Wenxia, et al.Microwave-magnetic field dual-response raspberry-like microspheres for targeted and repeated self-healing from electrical damage of insulating composites[J]. Journal of Materials Chemistry C, 2022, 10(28): 10262-10270. [29] 刘衍, 周求宽, 赵晶轩, 等. 交互区对纳米Al2O3-环氧树脂复合电介质短时击穿特性的影响[J]. 西安交通大学学报, 2016, 50(12): 18-23, 154. Liu Yan, Zhou Qiukuan, Zhao Jingxuan, et al.Effect of interaction zone on short-time breakdown of NanoAl2O3-epoxy composites[J]. Journal of Xi’an Jiaotong University, 2016, 50(12): 18-23, 154. [30] 程显, 李文博, 陈硕, 等. 纳米SiO2/ Al2O3复合改性对环氧树脂绝缘性能的影响[J]. 高分子材料科学与工程, 2020, 36(11): 86-92. Cheng Xian, Li Wenbo, Chen Shuo, et al.Effect of nano-SiO2/Al2O3 on the insulation properties of epoxy resin[J]. Polymer Materials Science & Engineering, 2020, 36(11): 86-92. [31] Khan M Z, Wang Feipeng, He Li, et al.Influence of treated nano-alumina and gas-phase fluorination on the dielectric properties of epoxy resin/alumina nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 410-417. [32] 赵玉顺, 闫程, 王学培, 等. APTES对环氧树脂/ Al2O3复合材料填料沉降和性能的影响[J]. 高电压技术, 2022, 48(3): 848-856. Zhao Yushun, Yan Cheng, Wang Xuepei, et al.Effect of APTES on sedimentation and properties of epoxy resin/Al2O3 composites fillers[J]. High Voltage Engineering, 2022, 48(3): 848-856. [33] Bian Wancong, Yao Tong, Chen Ming, et al.The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin[J]. Composites Science and Technology, 2018, 168: 420-428. [34] 国家质量监督检验检疫总局, 国家标准化管理委员会. 绝缘材料电气强度试验方法第1部分:工频下试验: GB/T 1408.1—2016[S]. 北京: 中国标准出版社, 2017. [35] Sun Potao, Li Chuang, Sima Wenxia, et al.Super electrical insulating materials based on honeycomb-inspired nanostructure: high electrical strength and low permittivity and dielectric loss[J]. Advanced Electronic Materials, 2022, 8(4): 2100979. [36] Sun Potao, Liu Fengqi, Sima Wenxia, et al.A novel UV, moisture and magnetic field triple-response smart insulating material achieving highly targeted self-healing based on nano-functionalized microcapsules[J]. Nanoscale, 2022, 14(6): 2199-2209. [37] 蔡迪, 李静. 硬脂醇改性的氧化石墨烯/正十八烷复合相变材料的热物性研究[J]. 化工学报, 2020, 71(10): 4826-4835. Cai Di, Li Jing.Study on thermal properties of stearyl alcohol modified graphene oxide/n-octadecane composite phase change materials[J]. CIESC Journal, 2020, 71(10): 4826-4835. [38] Sun Potao, Niu Chaolu, Sima Wenxia, et al.Magnetic field dual responsive blueberry-like microsphere achieving targeted, multiple-cyclic, long-term self-healing against electrical damage in insulating materials[J]. Progress in Organic Coatings, 2023, 183: 107752. [39] 刘一凡, 林兴, 王勃东, 等. 正十八烷储能复合材料的制备与表征[J]. 化工新型材料, 2024, 52(6): 98-102, 107. Liu Yifan, Lin Xing, Wang Bodong, et al.Preparation and characterization of n-octadecane energy storage composites[J]. New Chemical Materials, 2024, 52(6): 98-102, 107. [40] 刘冰, 王德平, 黄文旵, 等. 溶胶-凝胶法制备核壳SiO2/Fe3O4复合纳米粒子的研究[J]. 无机材料学报, 2008, 23(1): 33-38. Liu Bing, Wang Deping, Huang Wenhai, et al.Preparation of core-shell SiO2/Fe3O4 nanocomposite particles via sol-gel approach[J]. Journal of Inorganic Materials, 2008, 23(1): 33-38. [41] Granada E, Eguía P, Vilan J A, et al.FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process[J]. Renewable Energy, 2012, 41: 416-421. [42] 牛朝露, 李泽浩, 司马文霞, 等. 用于储能电站热失控预警的热敏涂层材料研究[J]. 南方能源建设, 2023, 10(5): 106-115. Niu Chaolu, Li Zehao, Sima Wenxia, et al.Research on thermosensitive coatings for thermal runaway warning in energy storage power station[J]. Southern Energy Construction, 2023, 10(5): 106-115. [43] 蔡迪, 李静, 焦乃勋. 纳米石墨烯片-正十八烷复合相变材料制备及热物性研究[J]. 物理学报, 2019, 68(10): 18-26. Cai Di, Li Jing, Jiao Naixun.Preparation and thermophysical properties of graphene nanoplatelets-octadecane phase change composite materials[J]. Acta Physica Sinica, 2019, 68(10): 18-26. [44] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite dielec-trics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [45] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605, 6911. He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605, 6911. [46] Li Shengtao, Yin Guilai, Chen G, et al.Short-term breakdown and long-term failure in nanodielectrics: a review[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5): 1523-1535. [47] 王好盛, 张冬海, 薛杨, 等. α-氧化铝粒径和形貌对GIS用环氧树脂复合材料介电性能和热性能影响的研究[J]. 化工新型材料, 2016, 44(7): 43-45. Wang Haosheng, Zhang Donghai, Xue Yang, et al.Influence of size and morphology of α-Al2O3 on the dielectric and thermal properties of epoxy resin composite[J]. New Chemical Materials, 2016, 44(7): 43-45.