Abstract:Materials of electrical insulation structure in power equipment will inevitably be affected by human and environmental factors during production, installation, laying, and service periods, and are prone to different forms of material damage such as intrinsic defects, mechanical damage, and electrical damage. Ideal self-healing materials are an ideal choice, which can self-identify and repair damage through physical interactions of molecules within the material or certain chemical reactions. The development of self-healing insulation materials is of great significance for extending the service life of power equipment and maintaining the stability of equipment operation, effectively promoting the development of the internet of things in power systems and strong smart grids. This paper summarizes the basic defects and damage forms of insulation materials in power equipment, and introduces the methods that can achieve the self-healing function of insulation materials.
孙文杰, 张磊, 毛佳乐, 雒佳明, 成永红. 电力设备绝缘损伤形式及自修复材料研究进展[J]. 电工技术学报, 2022, 37(8): 2107-2116.
Sun Wenjie, Zhang Lei, Mao Jiale, Luo Jiaming, Cheng Yonghong. Types of Insulation Damage and Self-Healing Materials of Power Equipment: A Review. Transactions of China Electrotechnical Society, 2022, 37(8): 2107-2116.
[1] 成永红, 陈玉, 孟永鹏, 等. 变电站电力设备绝缘综合在线监测系统的开发[J]. 高电压技术, 2007, 33(8): 61-65. Cheng Yonghong, Chen Yu, Meng Yongpeng, et al.Development of the integrated online-monitoring system for the insulation of power equipment in the transformer substation[J]. High Voltage Engineering, 2007, 33(8): 61-65. [2] 许易经, 韩学山, 杨明, 等. 基于设备在线监测的电网状态检修决策模型[J]. 电力系统自动化, 2020, 44(23): 72-83. Xu Yijing, Han Xueshan, Yang Ming, et al.Decision- making model of condition-based maintenance for power grid with equipment on-line monitoring[J]. Automation of Electric Power Systems, 2020, 44(23): 72-83. [3] 郭卫, 周松霖, 王立, 等. 电力电缆状态在线监测系统的设计及应用[J]. 高电压技术, 2019, 45(11): 3459-3466. Guo Wei, Zhou Songlin, Wang Li, et al.Design and application of online monitoring system for electrical cable states[J]. High Voltage Engineering, 2019, 45(11): 3459-3466. [4] Andritsch T, Kochetov R, Lennon B, et al.Space charge behavior of magnesium oxide filled epoxy nanocomposites at different temperatures and electric field strengths[C]//IEEE Electrical Insulation Con- ference (EIC), Annapolis, 2011: 136-140. [5] 张冠军, 李文栋, 刘哲, 等. 介电功能梯度材料在电气绝缘领域的研究进展[J]. 中国电机工程学报, 2017, 37(14): 4232-4245, 4303. Zhang Guanjun, Li Wendong, Liu Zhe, et al.Research progress on dielectric functionally graded materials for electrical insulation[J]. Proceedings of the CSEE, 2017, 37(14): 4232-4245, 4303. [6] 王雅群, 陈萌, 周桂月, 等. 电力设备测温用可逆热致变色材料的老化特性研究[J]. 绝缘材料, 2018, 51(12): 16-22. Wang Yaqun, Chen Meng, Zhou Guiyue, et al.Aging characteristics of reversible thermochromic materials used for temperature measurement of power equipment[J]. Insulating Materials, 2018, 51(12): 16-22. [7] 赵玉顺, 何元菡, 杨克荣, 等. Me-THPA扩链改性环氧树脂对其固化物绝缘特性的影响[J]. 电工技术学报, 2020, 35(增刊1): 311-319. Zhao Yushun, He Yuanhan, Yang Kerong, et al.Insulation performance of Me-THPA chain-extended epoxy resin cured products[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 311-319. [8] El-Refaie A.Role of advanced materials in electrical machines[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 124-132. [9] Zhang Jiaguang, Liu Yuanzhen, Feng Tao, et al.Immobilizing bacteria in expanded perlite for the crack self-healing in concrete[J]. Construction and Building Materials, 2017, 148: 610-617. [10] Xu Hongyin, Lian Jijian, Gao Maomao, et al.Self- healing concrete using rubber particles to immobilize bacterial spores[J]. Materials, 2019, 12(14): 2313. [11] Brochu A B W, Evans G A, Reichert W M. Mechanical and cytotoxicity testing of acrylic bone cement embedded with microencapsulated 2-octyl cyanoacrylate[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2014, 102(1): 181-189. [12] Hager M D, Greil P, Leyens C, et al.Self-healing materials[J]. Advanced Materials, 2010, 22(47): 5424-5430. [13] 李欢, 翟双, 陈杰, 等. 交联聚乙烯电缆绝缘中不同尺度缺陷结构综述[J]. 绝缘材料, 2019, 52(12): 1-9. Li Huan, Zhai Shuang, Chen Jie, et al.Review in different size of defect structures in XLPE cable insulation[J]. Insulating Materials, 2019, 52(12): 1-9. [14] 欧阳本红, 华明, 邓显波. 高压交联电缆材料及工艺发展综述[J]. 绝缘材料, 2016, 49(7): 1-6, 13. Ouyang Benhong, Hua Ming, Deng Xianbo.A review about development of HV XLPE cable materials and processes[J]. Insulating Materials, 2016, 49(7): 1-6, 13. [15] 王健, 张雪月, 单威威. 机械损伤对交联聚乙烯绝缘材料老化热解性能的影响[J]. 安全与环境学报, 2018, 18(5): 1811-1816. Wang Jian, Zhang Xueyue, Shan Weiwei.Effect of the mechanical destruction liability risk on the aging pyrolysis performance of the cross-linked polyethylene insulation material[J]. Journal of Safety and Environ- ment, 2018, 18(5): 1811-1816. [16] Cavallini A, Montanari G C, Tozzi M, et al.Diagnostic of HVDC systems using partial dis- charges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(1): 275-284. [17] 米彦, 桂路, 刘露露, 等. 环氧树脂针-板缺陷在指数衰减脉冲和正弦电压作用下的局部放电特性[J]. 电工技术学报, 2020, 35(2): 425-434. Mi Yan, Gui Lu, Liu Lulu, et al.Partial discharge characteristics of epoxy resin needle-plate defect under exponential decay pulse and sinusoidal voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 425-434. [18] Yang Xin, Zeng Lingli, Tang Xin, et al.Research on forming mechanism of surface discharge paths for solid dielectric with different shapes under micro- second impulse in liquid nitrogen[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2017, 24(6): 3452-3459. [19] 曹雯, 栾明杰, 申巍, 等. 交流复合绝缘子表面水珠动态行为及对闪络的影响[J]. 电机与控制学报, 2020, 24(2): 151-158. Cao Wen, Luan Mingjie, Shen Wei, et al.Dynamic behavior of water droplets on AC composite insulator surface and its influence on flashover[J]. Electric Machines and Control, 2020, 24(2): 151-158. [20] 胡多, 任成燕, 孔飞, 等. 表面粗糙度对聚合物材料真空沿面闪络特性的影响[J]. 电工技术学报, 2019, 34(16): 3512-3521. Hu Duo, Ren Chengyan, Kong Fei, et al.Influence of the roughness on surface flashover of polymer materials in vacuum[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3512-3521. [21] 高宇, 王小芳, 李楠, 等. 聚合物绝缘材料载流子陷阱的表征方法及陷阱对绝缘击穿影响的研究进展[J]. 高电压技术, 2019, 45(7): 2219-2230. Gao Yu, Wang Xiaofang, Li Nan, et al.Characteri- zation method for carrier trap and the effect on insulation breakdown within polymer insulating materials: a review[J]. High Voltage Engineering, 2019, 45(7): 2219-2230. [22] 张晓虹, 石泽祥, 张双, 等. 基于局部放电特征研究蒙脱土/聚乙烯纳米复合材料的电树枝性能[J]. 电工技术学报, 2019, 34(23): 5049-5057. Zhang Xiaohong, Shi Zexiang, Zhang Shuang, et al.Investigation on electrical tree resistance property of montmorillonite/polyethylene nanocomposites based on partial discharge characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(23): 5049-5057. [23] 杨国清, 刘庚, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的电树枝生长特性[J]. 电工技术学报, 2020, 35(20): 4415-4422. Yang Guoqing, Liu Geng, Wang Deyi, et al.Growth characteristics of electric tree for nana-SiO2/epoxy resin modified by hyperbranched polyester[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(20): 4415-4422. [24] Crine J P, Jow J.A water treeing model[J]. IEEE Transaction on Dielectrics Electrical Insulation, 2005, 12(2): 801-808. [25] Zhai Lei, Narkar A, Ahn K.Self-healing polymers with nanomaterials and nanostructures[J]. Nano Today, 2020, 30: 100826. [26] Shojaei A, Sharafi S, Li Guoqiang.A multiscale theory of self-crack-healing with solid healing agent assisted by shape memory effect[J]. Mechanics of Materials, 2015, 81: 25-40. [27] White S R, Sottos N R, Geubelle P H, et al.Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797. [28] Cho S H, Andersson H M, White S R, et al.Polydimethylsiloxane-based self-healing materials[J]. Advanced Materials, 2006, 18(8): 997-1000. [29] Yuan Yanchao, Rong Minzhi, Zhang Mingqiu, et al.Self-healing polymeric materials using epoxy/mercaptan as the healant[J]. Macromolecules, 2008, 41(14): 5197-5202. [30] Cho S H, White S R, Braun P V.Self-healing polymer coatings[J]. Advanced Materials, 2009, 21(6): 645-649. [31] Lesaint C, Risinggard V, Holto J, et al.Self-healing high voltage electrical insulation materials[C]//IEEE Electrical Insulation Conference (EIC), Philadelphia, 2014: 241-244. [32] Wang Youyuan, Li Yudong, Zhang Zhanxi, et al.Effect of doping microcapsules on typical electrical performances of self-healing polyethylene insulating composite[J]. Applied Sciences, 2019, 9(15): 3039. [33] Varley R J, Shen S, van der Zwaag S. The effect of cluster plasticisation on the self-healing behavior of ionomers[J]. Polymer, 2010, 51(3): 679-686. [34] Williams G, Trask R, Bond I.A self-healing carbon fibre reinforced polymer for aerospace applications[J]. Composites Part A-Applied Science & Manufacturing, 2007, 38(6): 1525-1532. [35] White S R, Moore J S, Sottos N R, et al.Restoration of large damage volumes in polymers[J]. Science, 2014, 344(6184): 620-623. [36] 张晓虹, 潘宇, 李瑞显, 等. EP/SiO2/MMT微纳米复合材料耐电树枝性能[J]. 高电压技术, 2017, 43(9): 2808-2812. Zhang Xiaohong, Pan Yu, Li Ruixian, et al.Properties of electrical resistance for EP/SiO2/MMT micro- composites[J]. High Voltage Engineering, 2017, 43(9): 2808-2812. [37] 杨瑞宵, 陈昊, 范勇, 等. 聚酰亚胺/纳米SiO2- Al2O3耐电晕薄膜的介电特性[J]. 电机与控制学报, 2019, 23(9): 57-64. Yang Ruixiao, Chen Hao, Fan Yong, et al.Dielectric properties of polyimide/Nano-SiO2-Al2O3 hybrid films with good corona resistance[J]. Electric Machines and Control, 2019, 23(9): 57-64. [38] 王旗, 李喆, 尹毅, 等. 微/纳米氧化铝/环氧树脂复合材料抑制电树枝生长能力的研究[J]. 电工技术学报, 2015, 30(6): 255-260. Wang Qi, Li Zhe, Yin Yi, et al.The effect of micro and nano alumina on the ability of impedance on the electrical tree of epoxy[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 255-260. [39] 赵洪, 徐明忠, 杨佳明, 等. MgO/LDPE纳米复合材料抑制空间电荷及电树枝化特性[J]. 中国电机工程学报, 2012, 32(16): 196-202. Zhao Hong, Xu Mingzhong, Yang Jiaming, et al.Space charge and electric treeing resistance properties of MgO/LDPE nanocomposite[J]. Processing of the CSEE, 2012, 32(16): 196-202. [40] Bian Wancong, Wang Wenxuan, Yang Ying.A self- healing and electrical-tree-inhibiting epoxy composite with hydrogen-bonds and SiO2 particles[J]. Polymers, 2017, 9(9): 431. [41] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al.Self-healing and thermoreversible rubber from supra- molecular assembly[J]. Nature, 2008, 451(7181): 977-980. [42] Kang J, Son D, Wang G J N, et al. Tough and water- insensitive self-healing elastomer for robust elec- tronic skin[J]. Advanced Materials, 2018, 30(13): 1706846. [43] Sun Haibin, Liu Xueying, Liu Suting, et al.Silicone dielectric elastomer with improved actuated strain at low electric field and high self-healing efficiency by constructing supramolecular network[J]. Chemical Engineering Journal, 2020, 384: 123242. [44] Burattini S, Colquhoun H M, Fox J D, et al.A self- repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions[J]. Chemical Communications, 2009, 44: 6717-6719. [45] Burattini S, Greenland B W, Merino D H, et al.A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding inter- actions[J]. Journal of the American Chemical Society, 2010, 132(34): 12051-12058. [46] Rao Yingli, Chortos A, Pfattner R, et al.Stretchable self-healing polymeric dielectrics crosslinked through metal-ligand coordination[J]. Journal of the American Chemical Society, 2016, 138(18): 6020-6027. [47] Peng Lei, Zhang Manjun, Lin Musong, et al.A novel self-healing power cable insulating material based on host-guest interactions[J]. RSC Advances, 2018, 8(45): 25313-25318. [48] Zechel S, Geitner R, Abend M, et al.Intrinsic self- healing polymers with a high E-modulus based on dynamic reversible urea bonds[J]. NPG Asia Materials, 2017, 9(8): e420. [49] Lai Yue, Kuang Xiao, Zhu Ping, et al.Colorless, transparent, robust, and fast scratch-self-healing elastomers via a phase-locked dynamic bonds design[J]. Advanced Materials, 2018, 30(38): 1802556. [50] Wu Xinxiu, Li Jinhui, Li Gang, et al.Heat-triggered poly (siloxane-urethane)s based on disulfide bonds for self-healing application[J]. Journal of Applied Polymer Science, 2018, 135(31): 46532. [51] Zhao Liwei, Yin Yue, Jiang Bo, et al.Fast room- temperature self-healing siloxane elastomer for healable stretchable electronics[J]. Journal of Colloid and Interface Science, 2020, 573: 105-114. [52] Zhang Yaling, Yang Bin, Zhang Xiaoyang, et al.A magnetic self-healing hydrogel[J]. Chemical Com- munications, 2012, 48(74): 9305-9307. [53] Yang Zhipeng, Li Hongqiang, Zhang Lin, et al.Highly stretchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor[J]. Journal of Colloid and Interface Science, 2020, 570: 1-10. [54] Cash J J, Kubo T, Bapat A P, et al.Room- temperature self-healing polymers based on dynamic- covalent boronic esters[J]. Macromolecules, 48(7): 2098-2106. [55] Kwok N, Hahn H T.Resistance heating for self- healing composites[J]. Journal of Composite Materials, 2007, 41(13): 1635-1654. [56] Zavada S R, Sauti G, Gordon K L, et al.Thermally induced healing of electrically insulating ethylene- octene copolymers[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19899-19908. [57] Chen Xiangxu, Wudl F, Mal A K, et al.New thermally remendable highly cross-linked polymeric materials[J]. Macromolecules, 2003, 36(6): 1802-1807. [58] Xu Jianan, Li Zhiying, Wang Bao, et al.Recyclable biobased materials based on Diels-Alder cyclo- addition[J]. Journal of Applied Polymer Science, 2019, 136(18): 47352. [59] Mahmoud E, Yu J, Gorte R J, et al.Diels-Alder and dehydration reactions of biomass-derived furan and acrylic acid for the synthesis of benzoic acid[J]. ACS Catalysis, 2015, 5(11): 6946-6955. [60] Rudolph T, Barthel M J, Kretschmer F, et al.Poly (2-vinyl pyridine)-block-poly (ethylene oxide) featuring a furan group at the block junction-synthesis and functionalization[J]. Macromolecular Rapid Com- munications, 2014, 35(9): 916-921. [61] Du Pengfei, Wu Meiyin, Liu Xuanxuan, et al.Diels- Alder-based crosslinked self-healing polyurethane/ urea from polymeric methylene diphenyl diisocy- anate[J]. Journal of Applied Polymer Science, 2014, 131(9): 40234. [62] Rivero G, Nguyen L T T, Hillewaere X K D, et al. One-pot thermo-remendable shape memory polyure- thanes[J]. Macromolecules, 2014, 47(6): 2010-2018. [63] Wang Jinke, Lü Chi, Li Zhongxiao, et al.Facile preparation of polydimethylsiloxane elastomer with self-healing property and remoldability based on Diels-Alder chemistry[J]. Macromolecular Materials and Engineering, 2018, 303(6): 1800089. [64] Wertz J T, Kuczynski J P, Boday D J.Thermally conductive-silicone composites with thermally rever- sible cross-links[J]. ACS Applied Materials & Inter- faces, 2016, 8(22): 13669-13672. [65] Willocq B, Bose R K, Khelifa F, et al.Healing by the Joule effect of electrically conductive poly (ester- urethane)/carbon nanotube nanocomposites[J]. Journal of Materials Chemistry A, 2016, 4(11): 4089-4097. [66] Pu Wuli, Fu Daihua, Wang Zhanhua, et al.Realizing crack diagnosing and self-healing by electricity with a dynamic crosslinked flexible polyurethane com- posite[J]. Advanced Science, 2018, 5(5): 1800101. [67] Lu Xili, Fei Guoxia, Xia Hesheng, et al.Ultrasound healable shape memory dynamic polymers[J]. Journal of Materials Chemistry A, 2014, 2(38): 16051-16060. [68] Engel T, Kickelbick G.Self-healing nanocomposites from silica-polymer core-shell nanoparticles[J]. Polymer International, 2014, 63(5): 915-923. [69] Schafer S, Kickelbick G.Self-healing polymer nano- composites based on Diels-Alder-reactions with silica nanoparticles: the role of the polymer matrix[J]. Polymer, 2015, 69: 357-368. [70] Li Qiutong, Jiang Miaojie, Wu Gang, et al.Photo- thermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20797-20807. [71] Gao Lei, Yang Yang, Xie Jiaye, et al.Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence[J]. Matter, 2020, 2(2): 451-463. [72] Yang Yang, He Jinliang, Li Qi, et al.Self-healing of electrical damage in polymers using superparama- gnetic nanoparticles[J]. Nature Nanotechnology, 2019, 14(2): 151-155. [73] Yang Yang, Gao Lei, Xie Jiaye, et al.Defect-targeted self-healing of multiscale damage in polymers[J]. Nanoscale, 2020, 12(6): 3605-3613. [74] Dissado L A.Understanding electrical trees in solids: from experiment to theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2002, 9(4): 483-497.