Influence of Nano-Al2O3 on Properties of Oil-Paper InsulationDuring Thermal Aging Process
Liao Ruijin1, He Lihua1, Lü Yandong2, Zhao Xuetong1, Yuan Yuan1
1.State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing University Chongqing 400044 China 2. Alstom Grid Technology Center Co. Ltd Shanghai 201114 China
Abstract:Thermal aging property of oil-paper insulation is a key factor to affect the life of transformer. In this work, nano-Al2O3 was added to insulating paper to improve its anti-thermal aging property. The composite papers containing 2% nano-Al2O3 were selected as samples of thermal aging test for the highest breakdown strength. The composite papers and normal papers were thermally aged at the temperature of 130 ℃ for 31 d. The variation of AC breakdown strength, dielectric property, degree of polymerization and tensile strength of insulating papers with aging time were obtained. The characteristics of insulating oil including furfural content, color, acid content, water, viscosity and dissolved gas were analyzed. The results show that, comparing with normal paper, the composite paper keeps higher electrical performance and the degree of polymerization and tensile strength of composite paper decrease more slowly during the aging process. The color of oil is lighter and the viscosity changes less in the oil impregnated composite paper. It is also found that the quantity of the thermal aging product of the oil impregnated composite paper is much less. Additionally, it is considered that the hydroxy on the surface of nano-Al2O3 can effectively adsorb H2O and neutralize low molecular weight acid in the thermal aging process, which restrained the catalysis of H+ in thermal aging reaction and reduced the thermal aging of oil-paper insulation.
[1] 罗治强, 董昱, 胡超凡. 2008年国家电网安全运行情况分析[J]. 中国电力, 2009, 42(5): 8-12. Luo Zhiqiang, Dong Yu, Hu Chaofan. Analysis of state grid security in 2008[J]. Electric Power, 2009, 42(5): 8-12. [2] 赵云峰, 张永强, 聂德鑫, 等. 基于模糊和证据理论的变压器本体绝缘状态评估方法[J]. 电力系统保护与控制, 2014, 42(23): 57-62. Zhao Yunfeng, Zhang Yongqiang, Nie Dexin, et al. Application of fuzzy and evidence theory in power transformers condition assessment[J]. Power System Protection and Control, 2014, 42(23): 57-62. [3] Ali M, Eley C, Emsley A, et al. Measuring and understanding the ageing of kraft insulating paper in power transformers[J]. IEEE Electrical Insulation Magazine, 1996, 12(3): 28-34. [4] Gilbert R, Jalbert J, Duchesne S, et al. Kinetics of the production of chain-end groups and methanol from the depolymerization of cellulose during the ageing of paper/oil systems,part 2: thermally-upgraded insulating papers[J]. Cellulose, 2010, 17(2): 253-269. [5] Pahlavanpour B, Linaker R, Povazan E. Extension of life span of power transformer by on-site improvement of insulating oils[C]//Sixth International Conference on Dielectric Materials, Measurements and Applications, 1992: 260-263. [6] 朱孟兆, 廖瑞金, 杜修明, 等. 绝缘纸中水分扩散及其对绝缘纸机械性能影响的仿真研究[J]. 电工技术学报, 2015, 30(10): 338-345. Zhu Mengzhao, Liao Ruijin, Du Xiuming, et al. Simulation of diffusion of moisture in insulation paper and the affect on mechanical properties of the paper[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 338-345. [7] Wang M, Vandermaar A, Srivastava K. Review of condition assessment of power transformers in service[J]. IEEE Electrical Insulation Magazine, 2002, 18(6): 12-25. [8] Yamagata N, Miyagi K, Oe E. Diagnosis of thermal degradation for thermally upgraded paper in mineral oil[C]//Proceedings of 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, 2007: 1000-1004. [9] Youyuan W, Miao T, Tao Y. Influence of cyanoethylated chemical modification on transformer insulation paper: molecular modeling study[C]//2012 International Conference on High Voltage Engineering and Application, Shanghai, 2012: 119-122. [10]Lundggaard L E, Hansen W, Linhjell D, et al. Aging of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 230-239. [11]廖瑞金, 吴伟强, 聂仕军, 等. 复合热稳定剂对绝缘纸协同抗老化效应的分子模拟研究[J]. 电工技术学报, 2015, 30(10): 330-337. Liao Ruijin, Wu Weiqiang, Nie Shijun, et al. Study on the synergistic anti-aging effect of composite thermal stabilizers on the insulation paper by molecular modeling[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 330-337. [12]Singha S, Thomas M J. Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz~1 GHz[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 2-11. [13]王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12): 230-235. Wang Qi, Li Zhe, Yin Yi. The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 230-235. [14]Singha S, Thomas M J. Dielectric properties of epoxy nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 12-23. [15]Takada T, Hayase Y, Tanaka Y, et al.Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 152-160. [16]Maity P, Basu S, Parameswaran V, et al. Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 52-62. [17]Zha J, Dang Z, Song H, et al. Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films[J]. Journal of Applied Physics, 2010, 108(9), 094113. [18]Yang Yang,He Jinliang, Wu Guangning, et al. “Thermal stabilization effect” of Al2O3 nano-dopants improves the high-temperature dielectric performance of polyimide[J]. Scientific Reports, 2015, 5(16986): 1-10. [19]张福州, 廖瑞金, 袁媛, 等. 低介电常数绝缘纸的制备及其击穿性能[J]. 高电压技术, 2012, 38(3): 691-696. Zhang Fuzhou, Liao Ruijin, Yuan Yuan, et al. Preparation for low-permittivity insulation paper and its breakdown performance[J]. High Voltage Engineering, 2012, 38(3): 691-696. [20]廖瑞金, 吕程, 吴伟强, 等. 纳米TiO2改性绝缘纸的绝缘性能[J]. 高电压技术, 2014, 40(7): 1932-1939. Liao Ruijin, Lü Cheng, Wu Weiqiang, et al. Insulating property of insulation paper modified by nano-TiO2[J]. High Voltage Engineering, 2014, 40(7): 1932-1939. [21]田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [22]李鸿岩, 郭磊, 刘斌, 等.聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J]. 中国电机工程学报, 2006, 26(20): 166-170. Li Hongyan, Guo Lei, Liu Bin, et al. The dielectic properties of polyimide/nano-Al2O3 composites films[J]. Proceedings of the CSEE, 2006, 26(20): 166-170. [23]廖瑞金, 刘团, 张福州, 等. 蒙脱土改性热稳定纸的制备及热老化特性研究[J]. 电工技术学报, 2015, 30(1): 220-227. Liao Ruijin, Liu Tuan, Zhang Fuzhou, et al. Preparation and thermal aging properties of montmorillonite modified thermally-upgraded paper[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 220-227. [24]周韫捷, 李红雷, 王琦梦, 等. 加速热老化对XLPE电缆绝缘力学性能和介电性能的影响研究[J]. 华东电力, 2014, 42(8): 1606-1610. Zhou Yunjie, Li Honglei, Wang Qimeng, et al. Effect of accelerated thermal aging on mechanical and dielectric properties of XLPE cable insulation[J]. East China Electric Power, 2014, 42(8): 1606-1610. [25]Allan D M. Practical life-assessment technique for aged transformer insulation[J]. IEE Proceedings-A September, 1993, 140(5): 404-408. [26]杨丽君, 廖瑞金, 孙会刚, 等. 油纸绝缘热老化特性及生成物的对比分析[J]. 中国电机工程学报, 2008, 28(22): 53-58. Yang Lijun, Liao Ruijin, Sun Huigang, et al. Contrasting analysis and investigation on properties and products of oil-paper during thermal aging process[J]. Proceedings of the CSEE, 2008, 28(22): 53-58. [27]Lundgaard L E, Hansen W, Ingebrigtsen S. Ageing of mineral oil impregnated cellulose by acid catalysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2): 540-546. [28]廖瑞金, 桑福敏, 刘刚, 等. 变压器不同油纸绝缘组合加速老化时油中水分和酸值含量研究[J]. 中国电机工程学报, 2010, 30(4): 125-131. Liao Ruijin, Sang Fumin, Liu Gang, et al. Study on neutral acid and water dissolved in oil for different types of oil-paper insulation compositions of transformers in accelerated ageing tests[J]. Proceedings of the CSEE, 2010, 30(4): 125-131. [29]许慧君, 王宗耀, 苏浩益. 基于 DGA 的反馈云熵模型电力变压器故障诊断方法研究[J]. 电力系统保护与控制, 2013, 41(23): 115-119. Xu Huijun, Wang Zongyao, Su Haoyi. Dissolved gas analysis based feedback cloud entropy model for power transformer fault diagnosis[J]. Power System Protection and Control, 2013, 41(23): 115-119. [30]冯长根, 蔡佩君, 张林, 等. 氧化铝表面有机改性及在聚苯乙烯中分散性能的研究[J]. 北京理工大学学报, 2003, 23(5): 645-654. Feng Changgen, Cai Peijun, Zhang Lin, et al. A study on the surface organic modification of aluminum oxide and its dispersion property in polystyrene[J]. Transactions of Beijing Institute of Technology, 2003, 23(5): 645-654. [31]张素凤, 张美娟, 豆莞莞, 等. 添加改性纳米SiO2对芳纶纸性能的影响[J]. 中国造纸, 2015, 34(12): 32-36. Zhang Sufeng, Zhang Meijuan, Dou Wanwan, et al. Effects of modified nano-SiO2 fillers on mechanical properties of aramid paper[J]. China Pulp & Paper, 2015, 34(12): 32-36. [32]薛茹君, 吴玉程. 硅烷偶联剂表面修饰纳米氧化铝[J]. 应用化学, 2007, 24(11): 1236-1239. Xue Rujun, Wu Yucheng. Surface modification of nano-alumina with silane coupling agent[J]. Chinese Journal of Applied Chemistry, 2007, 24(11): 1236-1239. [33]Wu Lingyan, Tong Shengrui, Hou Siqi, et al. Influence of temperature on the heterogeneous reaction of formic acid on αAl2O3[J]. The Journal of Physical Chemistry A, 2012, 116: 10390-10396. [34]Gayan R, Saralyn O, Jonas B, et al.Heterogeneous uptake and adsorption of gas-phase formic acid on oxide and clay particle surfaces: the roles of surface hydroxyl groups and adsorbed water in formic acid adsorption and the impact of formic acid adsorption on water uptake[J]. The Journal of Physical Chemistry A, 2013, 117(44): 11316-11327.