Control Strategy and Test of Offshore Wind Flexible Low Frequency Transmission Converter
Gao Shilong1,2, Chen Wu3, Yang Yong2, Wang Jialong2, Zhao Haixi3
1. School of Cyber Science and Engineering Southeast University Nanjing 210096 China; 2. State Grid Economic and Technological Research Institute Co. Ltd Beijing 102209 China; 3. School of Electrical Engineering Southeast University Nanjing 210096 China
Abstract:As a useful supplement to power frequency AC transmission and DC transmission, flexible low-frequency transmission can be applied to scenarios such as medium and long-distance offshore wind power transmission, onshore new energy collection and transmission, power flow evacuation in DC landing areas, multi Island interconnection and cable urban power supply, and long-distance transmission in remote areas. In the offshore wind power grid connected system, the low-frequency transmission technology can overcome the problem of large proportion of capacitive reactive power consumption when the traditional AC transmission is carried out through the submarine cable for long-distance transmission, and realize the advantages of long-distance power transmission without the need for offshore converter station, so it is very suitable for the application of offshore wind power grid connected system. Modular multilevel matrix converter (M3C) has important application prospects in offshore wind power scenarios due to its advantages of low output harmonic content and high equivalent switching frequency. Compared with modular multilevel converter (MMC), M3C converter uses 9 H-bridge cascaded bridges to form a matrix structure, which has complex structure, and each bridge arm bears the peak voltage of I/F and low frequency, and the control strategy is complex. Firstly, based on the working principle and mathematical model of M3C converter, this paper proposes the operation control strategy of M3C converter, including power frequency side control and low frequency side control. The power side control is divided into power module voltage control (power side outer loop control) and current side control. The low frequency side control is divided into low frequency side power side outer loop control and current side control; Aiming at the complex characteristics of voltage fluctuation of low-frequency converter M3C converter module and the requirements of bridge arm circulation control, a new voltage balancing and bridge arm circulation control strategy is designed. Secondly, this paper puts forward the design scheme of M3C converter, bridge arm reactor and valve control system of offshore wind power flexible low-frequency converter, and develops a 10KV 10MW water-cooled offshore wind power low-frequency converter based on M3C converter. Finally, the whole machine operation test system was built to carry out the sequence control active soft start and power module voltage balancing test, inverter de locking and whole machine test, and inverter reactive power test. The test shows that the low-frequency transmission converter of offshore wind power meets the requirements of practical application, and provides reference for engineering application design. Flexible low-frequency power transmission has the advantages of low line charging power, zero crossing interruption, variable voltage and so on, and can directly output low-frequency power by using wind turbines without offshore converter platform. It is one of the ways of efficient collection and transmission of large-scale new energy. In the future, the typical application scenarios of flexible low-frequency technology will be further expanded, and the low-frequency networking planning, design and engineering application of large-scale offshore wind power systems will be carried out by taking advantage of the flexible networking of low-frequency systems .
高仕龙, 陈武, 杨勇, 王加龙, 赵海熙. 海上风电柔性低频输电换流器控制策略及试验[J]. 电工技术学报, 2024, 39(zk1): 77-94.
Gao Shilong, Chen Wu, Yang Yong, Wang Jialong, Zhao Haixi. Control Strategy and Test of Offshore Wind Flexible Low Frequency Transmission Converter. Transactions of China Electrotechnical Society, 2024, 39(zk1): 77-94.
[1] 吴小丹, 朱海勇, 董云龙, 等. 面向柔性低频输电的模块化多电平矩阵变换器分频分层控制[J]. 电力系统自动化, 2021, 45(18): 131-140. Wu Xiaodan, Zhu Haiyong, Dong Yunlong, et al.Frequency-division and hierarchical control of modular multilevel matrix converter for flexible low-frequency transmission[J]. Automation of Electric Power Systems, 2021, 45(18): 131-140. [2] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771. [3] 吴姗姗, 王双, 彭洪兵, 等. 我国海上风电产业发展思路与对策建议[J]. 经济纵横, 2017(1): 68-73. Wu Shanshan, Wang Shuang, Peng Hongbing, et al.Development thought and suggestions on offshore wind power industry in China[J]. Economic Review, 2017(1): 68-73. [4] 袁志昌, 郭佩乾, 刘国伟, 等. 新能源经柔性直流接入电网的控制与保护综述[J]. 高电压技术, 2020, 46(5): 1460-1475. Yuan Zhichang, Guo Peiqian, Liu Guowei, et al.Review on control and protection for renewable energy integration through VSC-HVDC[J]. High Voltage Engineering, 2020, 46(5): 1460-1475. [5] 宋伟宏, 杨林刚, 林磊, 等. 基于MMC-HVDC的海上风电柔直系统频率波动抑制技术[J]. 高电压技术, 2021, 47(8): 2760-2770. Song Weihong, Yang Lingang, Lin Lei, et al.Frequency fluctuation suppression technology of offshore wind power generation plants based on MMC-HVDC transmission[J]. High Voltage Enginee-ring, 2021, 47(8): 2760-2770. [6] 徐进, 韦古强, 金逸, 等. 江苏如东海上风电场并网方式及经济性分析[J]. 高电压技术, 2017, 43(1): 74-81. Xu Jin, Wei Guqiang, Jin Yi, et al.Economic analysis on integration topology of Rudong offshore wind farm in Jiangsu Province[J]. High Voltage Engineering, 2017, 43(1): 74-81. [7] 杜舒, 赵成勇, 冯谟可, 等. 用于全直流海上风电系统的单相混合型MMC直流变压器及其控制策略[J]. 高电压技术, 2023, 49(1): 51-60. Du Shu, Zhao Chengyong, Feng Moke, et al.Single-phase hybrid MMC DC transformer and its control strategy for all-DC offshore wind power system[J]. High Voltage Engineering, 2023, 49(1): 51-60. [8] 宁联辉, 王锡凡, 滕予非, 等. 风力发电经分频输电接入系统的实验[J]. 中国电机工程学报, 2011, 31(21): 9-16. Ning Lianhui, Wang Xifan, Teng Yufei, et al.Experiment on wind power grid integration via fractional frequency transmission system[J]. Procee-dings of the CSEE, 2011, 31(21): 9-16. [9] 陆立文, 吴小丹, 邱德锋, 等. 基于模块化多电平矩阵变换器的低频输电系统柔性启停策略[J]. 高电压技术, 2023, 49(1): 248-257. Lu Liwen, Wu Xiaodan, Qiu Defeng, et al.Flexible startup and shutdown strategy of low frequency transmission system based on modular multilevel matrix converter[J]. High Voltage Engineering, 2023, 49(1): 248-257. [10] 孙玉巍, 王童, 付超, 等. 适用于海上风电分频输电的模块化多电平矩阵变换器故障穿越控制策略[J]. 高电压技术, 2023, 49(1): 19-30. Sun Yuwei, Wang Tong, Fu Chao, et al.Fault ride-through control strategy of modular multilevel matrix converter for fractional frequency transmission system[J]. High Voltage Engineering, 2023, 49(1): 19-30. [11] 程启明, 谢怡群, 马信乔, 等. 不平衡电网模块化多电平矩阵换流器的控制策略[J]. 高电压技术, 2023, 49(5): 1975-1984. Cheng Qiming, Xie Yiqun, Ma Xinqiao, et al.Control strategy of modular multilevel matrix converter under unbalanced grid conditions[J]. High Voltage Engi-neering, 2023, 49(5): 1975-1984. [12] 王锡凡, 卫晓辉, 宁联辉, 等. 海上风电并网与输送方案比较[J]. 中国电机工程学报, 2014, 34(31): 5459-5466. Wang Xifan, Wei Xiaohui, Ning Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31): 5459-5466. [13] 徐政. 海上风电送出主要方案及其关键技术问题[J]. 电力系统自动化, 2022, 46(21): 1-10. Xu Zheng.Main schemes and key technical problems for grid integration of offshore wind farm[J]. Automation of Electric Power Systems, 2022, 46(21): 1-10. [14] Ruddy J, Meere R, O’Loughlin C, et al. Design of VSC connected low frequency AC offshore transmission with long HVAC cables[J]. IEEE Transactions on Power Delivery, 2018, 33(2): 960-970. [15] 张蕾, 许挺. 世界首个柔性低频输电工程正式落点浙江杭州[J]. 新能源科技, 2021(6): 11. Zhang Lei, Xu Ting.The world’s first flexible low frequency transmission project officially landed in Hangzhou, Zhejiang[J]. New Energy Technology, 2021(6): 11. [16] 唐英杰, 张哲任, 徐政. 基于有源型M3C矩阵变换器的海上风电低频送出方案[J]. 电力系统自动化, 2022, 46(8): 113-122. Tang Yingjie, Zhang Zheren, Xu Zheng.Low-frequency transmission scheme for offshore wind power based on active modular multilevel matrix converter[J]. Automation of Electric Power Systems, 2022, 46(8): 113-122. [17] 郑涛, 宋伟男, 吕文轩. 基于M3C的低频输电系统不对称故障穿越控制策略[J]. 电力系统保护与控制, 2023, 51(8): 107-117. Zheng Tao, Song Weinan, Lü Wenxuan.Asymmetric fault ride-through control strategy for a low frequency AC transmission system based on a modular multi-level matrix converter[J]. Power System Protection and Control, 2023, 51(8): 107-117. [18] 郑涛, 康恒, 宋伟男. 可实现低频输电系统不对称故障穿越的M3C电容电压均衡控制策略[J]. 电力系统保护与控制, 2023, 51(23): 130-140. Zheng Tao, Kang Heng, Song Weinan.Asymmetric fault ride-through control strategy for low-frequency transmission systems realizing the capacitor voltage balance of modular multilevel matrix converters[J]. Power System Protection and Control, 2023, 51(23): 130-140. [19] 王婷. 基于模块化多电平矩阵变换器的电力电子变压器研究[D]. 济南: 山东大学, 2015. Wang Ting.Research on power electronic transformer based on modular multilevel matrix converter[D]. Jinan: Shandong University, 2015. [20] 马信乔, 程启明, 江畅, 等. 基于双载波调制策略的模块化多电平矩阵变换器的优化电平方法[J]. 高电压技术, 2021, 47(3): 963-971. Ma Xinqiao, Cheng Qiming, Jiang Chang, et al.Optimized level method for modular multilevel matrix converter based on dual-carrier modulation strategy[J]. High Voltage Engineering, 2021, 47(3): 963-971. [21] 孙玉巍, 常静恬, 付超, 等. 分频输电系统模块化多电平矩阵变换器谐波特性分析[J]. 电力工程技术, 2022, 41(5): 21-30, 84. Sun Yuwei, Chang Jingtian, Fu Chao, et al.Harmonic characteristics analysis of modular multilevel matrix converter for fractional frequency transmission system[J]. Electric Power Engineering Technology, 2022, 41(5): 21-30, 84. [22] 宁联辉, 吴再驰, 王锡凡, 等. 基于模块化多电平矩阵式换流器的分频输电系统低频侧阻抗建模及稳定性判别[J]. 电网技术, 2022, 46(10): 3720-3730. Ning Lianhui, Wu Zaichi, Wang Xifan, et al.Low-frequency side impedance modeling and stability discrimination of fractional frequency transmission system based on modular multilevel matrix converter[J]. Power System Technology, 2022, 46(10): 3720-3730. [23] 苏匀, 李少华, 王秀丽, 等. 基于PWM交交变频器的分频风电系统研究[J]. 电力系统保护与控制, 2015, 43(13): 86-91. Su Yun, Li Shaohua, Wang Xiuli, et al.Research on fractional frequency wind power system based on PWM cycloconvertor[J]. Power System Protection and Control, 2015, 43(13): 86-91. [24] 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43(5): 167-174. Huang Minghuang, Wang Xiuli, Liu Shenquan, et al.Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43(5): 167-174. [25] 张翀. 模块化多电平矩阵换流器在AC/AC系统应用中的关键技术研究[D]. 杭州: 浙江大学, 2020: 18. Zhang Chong.Research on key technologies of modular multilevel matrix converter in AC/AC system application[D]. Hangzhou: Zhejiang University, 2020: 18. [26] 张午宇, 齐磊, 张翔宇, 等. 计及金属化薄膜电容器与IGBT模块退化过程相关性的柔直换流阀组件可靠性评估方法[J]. 电工技术学报, 2024, 39(14): 4508-4518. Zhang Wuyu, Qi Lei, Zhang Xiangyu, et al.Reliability evaluation method for VSC-HVDC valve submodules considering the correlation between the degradation process of metallized polypropylene film capacitors and IGBT modules[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4508-4518. [27] 徐云飞, 肖湘宁, 孙雅旻, 等. 应用于高压低频输电的H桥级联型矩阵变换器环流机理分析[J]. 电工技术学报, 2017, 32(6): 191-200. Xu Yunfei, Xiao Xiangning, Sun Yamin, et al.Circulating current analysis of cascaded H-bridge matrix converter for high voltage low-frequency AC transmission[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 191-200. [28] 刘士利, 罗英楠, 刘宗烨, 等. 基于电磁-热耦合原理的三芯铠装电缆在低频输电方式下的损耗特性研究[J]. 电工技术学报, 2021, 36(22): 4829-4836. Liu Shili, Luo Yingnan, Liu Zongye, et al.Study on loss characteristics of three core armored cable under low-frequency transmission mode based on electromagnetic, thermal coupling principle[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4829-4836. [29] 郑涛, 康恒. 基于控保协同的柔性低频输电系统电流差动保护性能提升方案[J/OL]. 电工技术学报, 2024: 1-15. https://doi.org/10.19595/j.cnki.1000-6753.tces.240202. Zheng Tao, Kang Heng. Performance improvement scheme of current differential protection for flexible low-frequency transmission system based on coordination of control and protection[J/OL]. Transactions of China Electrotechnical Society, 2024: 1-15. https://doi.org/10.19595/j.cnki.1000-6753.tces.240202. [30] 刘云鹏, 赵家莹, 刘贺晨, 等. 低频电压下含纤维素颗粒变压器油绝缘特性及影响因素[J]. 电工技术学报, 2024, 39(4): 1198-1207. Liu Yunpeng, Zhao Jiaying, Liu Hechen, et al.Insulation characteristics and influencing factors of transformer oil containing cellulose particles under low-frequency voltage[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1198-1207. [31] 丁杰, 吕航, 王风光, 等. 应用于低频电力系统的母线差动保护判据研究[J]. 电气技术, 2023, 24(10): 44-50. Ding Jie, Lü Hang, Wang Fengguang, et al.Research on bus differential protection criterion applied to low frequency power system[J]. Electrical Engineering, 2023, 24(10): 44-50. [32] 吴小丹. 面向低频海上风电送出的模块化多电平矩阵变换器输入输出侧解耦控制[J]. 电网技术, 2022, 46(8): 2909-2923. Wu Xiaodan.Input/output side decoupling control of modular multilevel matrix converter for low-frequency offshore wind power transmission[J]. Power System Technology, 2022, 46(8): 2909-2923. [33] 段子越, 孟永庆, 宁联辉, 等. 柔性分频输电系统的构建规划及关键设备技术综述[J]. 电力系统自动化, 2023, 47(10): 205-215. Duan Ziyue, Meng Yongqing, Ning Lianhui, et al.Review on construction planning and key equipment technology of flexible fractional frequency transmission system[J]. Automation of Electric Power Systems, 2023, 47(10): 205-215.