Analysis and Design of Compensation Network for Two-Coil Wireless Power Transfer System with Variable Constant Voltage Gain Characteristics
Zhang Pengfei1, Gong Lijiao1,2, Ma Xinxin1, Yang Tong1, Huang Bo3
1. College of Mechanical and Electrical Engineering Shihezi University Shihezi 832003 China; 2. Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology Shihezi University Shihezi 832003 China; 3. Xinjiang TianFu Energy Co., Ltd Shihezi 832000 China
Abstract:Compared with the multi-coil structure, the two-coil wireless power transfer (WPT) system shows shortcomings in transmission distance and transmission efficiency, but the transmission characteristics of the WPT system can be improved by increasing the order of the compensation network and the active control strategy. Different from the design of compensation network, the research of active control strategy has the problems of large system complexity and high control cost. Therefore, combined with the transformer T network model, this paper proposes a new method for compensating network parameters and transmission characteristics analysis of a two-coil WPT system with variable gain constant voltage characteristics, which lays a research foundation for multi-node WPT technology of sensor networks. Firstly, the equivalent model of transformer T-network is established, and the element parameter expression of S-S two-coil WPT system with constant voltage characteristic is given. Secondly, the new parameters-equivalent coupling coefficient kr and equivalent variable ratio n1 are defined, and a new method for determining the compensation network parameters of SP-S and SP-PS compensation structures with variable gain and constant voltage characteristics is proposed. Then, considering the direct influence of system parasitic resistance on transmission characteristics, the variation trend of voltage gain stability with equivalent parameters under coil offset and frequency oscillation is analyzed, and the optimal equivalent parameter expression under coil offset is derived. Finally, the experimental prototypes of two-coil WPT system with S-S, SP-S and SP-PS compensation structures are built to verify the correctness and effectiveness of the variable gain constant voltage output characteristics and analysis conclusions of the proposed system. Through theoretical analysis and experimental verification, the following conclusions can be drawn: (1) The proposed new design method of two-coil WPT system’s compensation network makes the output voltage gain of WPT system meet the target variable ratio, simplifies the parameter design method, increases the degree of freedom of system design, and makes the parameter selection more flexible. (2) The two-coil WPT system under coil offset will increase first and then decrease with the increase of equivalent variable ratio n1, and will also show the same trend with the increase of equivalent coupling coefficient kr. (3) Considering the direct influence of the parasitic resistance of the system on the transmission characteristics, the optimal equivalent parameter expression of WPT system with or without parallel resonant element CL under coil offset is obtained. (4) The transmission efficiency of the steady-state WPT system increases first and then decreases with the increase of n21, the two-coil WPT system with CL increases first and then decreases with the increase of the equivalent coupling coefficient kr, and the WPT system without CL increases first and then decreases with the increase of k2r.
张鹏飞, 龚立娇, 马欣欣, 杨彤, 黄波. 具有可变增益恒压特性的双线圈无线电能传输系统补偿网络设计与分析[J]. 电工技术学报, 2024, 39(5): 1256-1269.
Zhang Pengfei, Gong Lijiao, Ma Xinxin, Yang Tong, Huang Bo. Analysis and Design of Compensation Network for Two-Coil Wireless Power Transfer System with Variable Constant Voltage Gain Characteristics. Transactions of China Electrotechnical Society, 2024, 39(5): 1256-1269.
[1] 张献, 邢子瑶, 薛明, 等. 无线电能传输系统异物检测技术研究综述[J]. 电工技术学报, 2022, 37(4): 793-807. Zhang Xian, Xing Ziyao, Xue Ming, et al.Overview of foreign object detection in wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 793-807. [2] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [3] Park S W, Wake K, Watanabe S.Incident electric field effect and numerical dosimetry for a wireless power transfer system using magnetically coupled resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(9): 3461-3469. [4] Zhou Wei, Su Yugang, Huang Liang, et al.Wireless power transfer across a metal barrier by combined capacitive and inductive coupling[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4031-4041. [5] 李阳, 石少博, 刘雪莉, 等. 磁场耦合式无线电能传输耦合机构综述[J]. 电工技术学报, 2021, 36(增刊2): 389-403. Li Yang, Shi Shaobo, Liu Xueli, et al.Overview of magnetic coupling mechanism for wireless power transfer[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 389-403. [6] 李建国, 张波, 荣超. 近场磁耦合无线电能与信息同步传输技术的发展(下篇): 电路拓扑[J]. 电工技术学报, 2022, 37(16): 3989-4003. Li Jianguo, Zhang Bo, Rong Chao.An overview of simultaneous wireless power and information transfer via near-field magnetic links (part Ⅱ): circuit topology[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 3989-4003. [7] 赵鱼名, 王智慧, 苏玉刚, 等. 基于T型CLC谐振网络的恒压型电场耦合电能传输系统负载自适应技术[J]. 电工技术学报, 2020, 35(1): 106-114. Zhao Yuming, Wang Zhihui, Su Yugang, et al.Load adaptive technology of constant voltage electric-field coupled power transfer system based on T-CLC resonant network[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 106-114. [8] Sample A P, Meyer D T, Smith J R.Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554. [9] 刘俊有. 具有恒流恒压输出特性的磁耦合无线电能传输系统设计[D]. 天津: 天津理工大学, 2022. [10] 谢诗云, 刁勤晴, 杨奕, 等. 基于复合谐振网络的恒定输出型ECPT系统[J]. 中国电机工程学报, 2020, 40(24): 8165-8178. Xie Shiyun, Diao Qinqing, Yang Yi, et al.Electric-field coupled power transfer system based composite resonant networks with constant output[J]. Proceedings of the CSEE, 2020, 40(24): 8165-8178. [11] 谭平安, 廖佳威, 谭廷玉, 等. 基于发射侧T/F变结构补偿网络的恒压/恒流无线充电系统[J]. 电工技术学报, 2021, 36(2): 248-257. Tan Ping'an, Liao Jiawei, Tan Tingyu, et al. Constant voltage/constant current wireless charging system based on T/F variable structure compensation network of transmitter-side[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 248-257. [12] 郭星, 刘利强, 齐咏生, 等. 基于LCL-LCL/S混合自切换谐振式无线充电系统[J]. 电工技术学报, 2022, 37(10): 2422-2434. Guo Xing, Liu Liqiang, Qi Yongsheng, et al.Hybrid self-switching resonant wireless charging system based on LCL-LCL/S[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2422-2434. [13] 苏玉刚, 谢诗云, 王智慧, 等. 基于F-F/T变结构谐振网络的恒压-恒流型电场耦合电能传输系统[J]. 电工技术学报, 2019, 34(6): 1127-1136. Su Yugang, Xie Shiyun, Wang Zhihui, et al.An electric-field coupled power transfer system with constant voltage and constant current output based on F-F/T changeable resonant circuit[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1127-1136. [14] Zhou Jiali, Zhang Bo, Xiao Wenxun, et al.Nonlinear parity-time-symmetric model for constant efficiency wireless power transfer: application to a drone-in-flight wireless charging platform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 4097-4107. [15] Lim T, Lee Y.Reconfigurable coil array for near-field beamforming to compensate for misalignment in WPT systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4711-4719. [16] 黄晓生, 陈为. 用于磁感应耦合式电能传输系统的新型补偿网络[J]. 中国电机工程学报, 2014, 34(18): 3020-3026. Huang Xiaosheng, Chen Wei.A novel compensation network for ICPT systems[J]. Proceedings of the CSEE, 2014, 34(18): 3020-3026. [17] 陈庆彬, 杨丰钢, 陈为. 具有可变增益恒压特性的三线圈WPT系统补偿网络结构及参数确定新方法[J]. 中国电机工程学报, 2021, 41(6): 2277-2288. Chen Qingbin, Yang Fenggang, Chen Wei.A new compensation network structure and parameter determination method with variable constant voltage gain characteristics based on three-coil WPT system[J]. Proceedings of the CSEE, 2021, 41(6): 2277-2288. [18] 陈庆彬, 张伟豪, 叶逢春, 等. 结合变压器T网络模型的具有可变恒压增益特性的补偿网络参数确定新方法[J]. 中国电机工程学报, 2017, 37(15): 4483-4494. Chen Qingbin, Zhang Weihao, Ye Fengchun, et al.A new compensation network parameters design method with variable constant voltage gain characteristics based on transformer T model[J]. Proceedings of the CSEE, 2017, 37(15): 4483-4494. [19] 石坤宏, 程志江, 王维庆, 等. 3种谐振式无线电能传输系统的电路法模型及其特性[J]. 高电压技术, 2021, 47(6): 2240-2249. Shi Kunhong, Cheng Zhijiang, Wang Weiqing, et al.Circuit model and characteristics of three resonant wireless power transmission systems[J]. High Voltage Engineering, 2021, 47(6): 2240-2249. [20] 江彦伟. 分数阶非自治及自治电路的磁耦合无线电能传输机理与特性研究[D]. 广州: 华南理工大学, 2019.