Numerical Simulation of Hygroscopic Characteristic and Wet Stress Distribution of GFRP Material Used in High Voltage Composite Insulators
Hou Sizu1,2, Zhong Zheng3, Liu Yunpeng3, Geng Jianghai3
1. Hebei Key Laboratory of Power Internet of Things Technology North China Electric Power University Baoding 071003 China; 2. Baoding Eagle Communication and Automation Co. Ltd Baoding 071003 China; 3. Hebei Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China
Abstract:On the condition of the long-term high temperature and high humidity environment in southern China, external moisture gradually penetrates into the composite insulator core rod, causing the core rod to decay-like deterioration and even the entire insulator to break. Therefore, accurate simulation and analysis of the moisture intrusion process is essential. This paper simulates and calculates the transient hygroscopic diffusion process inside glass fiber reinforced plastic (GFRP) material used in high voltage composite insulators and the change of the wet stress in the material at the external environment temperature of 10℃, 20℃ and 30℃, and the relative humidity of 90%. The results show that the diffusion process of water inside the GFRP material satisfies Fick’s law, and both the hygroscopic diffusion rate and the saturated hygroscopic rate increase with the increase of external environment temperature. In the GFRP material, the wet stress and wet mismatch stress at the densely distributed areas of the fiber distribution and fiber-matrix interface are large, and they are positively correlated with the moisture absorption. When the saturated hygroscopic rate is 0.008%~0.4%, the maximum wet stress inside the material can reach 48.07~66.06MPa. Further analysis shows that when the moisture absorption and dehumidification cycle periodically and the wet stress level is high inside the material, defects such as micro cracks, micro holes, fiber-matrix debonding and cracking are likely to occur, and the moisture absorption of the material is further promoted. The relative error between the calculated value of this paper and the experimental value of the existing literature is within ±5%. The conclusions have important reference value for revealing the decay-like fracture of the composite insulator core rod and improving the service life of composite insulators.
侯思祖, 钟正, 刘云鹏, 耿江海. 高压复合绝缘子用GFRP材料吸湿特性及湿应力分布数值模拟[J]. 电工技术学报, 2022, 37(4): 1010-1019.
Hou Sizu, Zhong Zheng, Liu Yunpeng, Geng Jianghai. Numerical Simulation of Hygroscopic Characteristic and Wet Stress Distribution of GFRP Material Used in High Voltage Composite Insulators. Transactions of China Electrotechnical Society, 2022, 37(4): 1010-1019.
[1] Jamaluddin N A, Sheikh S, Hanan U A, et al.Comparison of tensile properties between natural fibres and inorganic fibres for strengthening timber structures[J]. MATEC Web of Conferences, 2019, 276: 01010. [2] Yang Shinyi, Lin Weining, Huang Yuanli, et al.Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites[J]. Carbon, 2011, 49(3): 793-803. [3] Zhao Xiaoling, Zhang Lei.State-of-the-art review on FRP strengthened steel structures[J]. Steel Con- struction, 2007, 29(8): 1808-1823. [4] 刘云鹏, 李乐, 张铭嘉, 等. 复合绝缘横担界面特性检测研究现状[J]. 电工技术学报, 2020, 35(2): 408-424. Liu Yunpeng, Li Le, Zhang Mingjia, et al.Research status of interface detection for composite cross- arm[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 408-424. [5] 张锐, 吴光亚, 袁田, 等. 我国复合绝缘子关键制造技术的发展与展望[J]. 高电压技术, 2007, 33(1): 106-110. Zhang Rui, Wu Guangya, Yuan Tian, et al.Develop- ment history and direction of composite insulators on important manufacture technique[J]. High Voltage Engineering, 2007, 33(1): 106-110. [6] 党镇平, 吴亚民. 脱模剂对复合绝缘子产品质量的影响分析[J]. 电网技术, 2006, 30(12): 106-108. Dang Zhenping, Wu Yamin.Influence of mold releasing agent used in production of composite insulator core on quality of composite insulators[J]. Power System Technology, 2006, 30(12): 106-108. [7] 梁曦东, 高岩峰, 王家福, 等. 中国硅橡胶复合绝缘子快速发展历程[J]. 高电压技术, 2016, 42(9): 2888-2896. Liang Xidong, Gao Yanfeng, Wang Jiafu, et al.Rapid development of silicone rubber composite insulator in China[J]. High Voltage Engineering, 2016, 42(9): 2888-2896. [8] 梁曦东, 高岩峰. 复合绝缘子酥朽断裂研究(一): 酥朽断裂的主要特征、定义及判据[J]. 中国电机工程学报, 2016, 36(17): 4778-4786. Liang Xidong, Gao Yanfeng.Study on decay-like fracture of composite insulator, part II: experimental simulation and preventive method discussion of decay-like fracture[J]. Proceedings of the CSEE, 2016, 36(17): 4778-4786. [9] 谢从珍, 曾磊磊, 甘永叶, 等. 基于热重红外联用的复合绝缘子芯棒热解特性研究[J]. 电工技术学报, 2018, 33(增刊1): 227-233. Xie Congzhen, Zeng Leilei, Gan Yongye, et al.Study on pyrolysis characteristics of fiber reinforced plastic rod of composite insulators based on TG-FTIR analysis[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 227-233. [10] 王黎明, 张中浩, 成立, 等. 复合绝缘子护套受潮对端部异常温升的影响[J]. 电网技术, 2016, 40(2): 608-613. Wang Liming, Zhang Zhonghao, Cheng Li, et al.Effect of damp sheath on abnormal temperature rise at end of composite insulator[J]. Power System Tech- nology, 2016, 40(2): 608-613. [11] 梁英, 高婷, 王祥念, 等. 电场和温度协同作用下复合绝缘子用硅橡胶微观结构演化[J]. 电工技术学报, 2020, 35(7): 1575-1583. Liang Ying, Gao Ting, Wang Xiangnian, et al.Microstructure evolution of silicone rubber used for composite insulators under the effects of electric field and temperature[J]. Transactions of China Electro- technical Society, 2020, 35(7): 1575-1583. [12] 张志劲, 张翼, 蒋兴良, 等. 自然环境不同年限复合绝缘子硅橡胶材料老化特性表征方法研究[J]. 电工技术学报, 2020, 35(6): 1368-1376. Zhang Zhijin, Zhang Yi, Jiang Xingliang, et al.Study on aging characterization methods of composite insulators aging in natural environment for different years[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1368-1376. [13] Guermazi N, Tarjem A B, Ksouri I, et al.On the durability of FRP composites for aircraft structures in hygrothermal conditioning[J]. Composites Part B, 2016, 85: 294-304. [14] Eslami S, Honarbakhsh-Raouf A, Eslami S.Effects of moisture absorption on degradation of E-glass fiber reinforced vinyl ester composite pipes and modelling of transient moisture diffusion using finite element analysis[J]. Corrosion Science, 2015, 90: 168-175. [15] Xin Haohui, Liu Yuqing, Mosallam A, et al.Moisture diffusion and hygrothermal aging of pultruded glass fiber reinforced polymer laminates in bridge appli- cation[J]. Composites Part B, 2016, 100: 197-207. [16] 米彦, 苟家喜, 刘露露, 等. 脉冲介质阻挡放电等离子体改性对BN/EP复合材料击穿强度和热导率的影响[J]. 电工技术学报, 2020, 35(18): 3949-3959. Mi Yan, Gou Jiaxi, Liu Lulu, et al.Effect of pulse dielectric barrier discharge plasma modification on breakdown strength and thermal conductivity of BN/EP composites[J]. Transactions of China Electro- technical Society, 2020, 35(18): 3949-3959. [17] Zheng Xuefeng, Jia Hongyu, Wang Jinsong.Energy internet development based on blockchain techno- logy[C]//ICCREM 2019: Innovative Construction Project Management and Construction Industriali- zation, Banff, Alberta, Canada, 2019. [18] Jiang Xu, Kolstein H, Bijlaard F, et al.Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge: moisture diffusion characteristics[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57(1): 49-58. [19] Christian S J, Billington S L.Moisture diffusion and its impact on uniaxial tensile response of biobased composites[J]. Composites Part B, 2012, 43: 2303-2312. [20] 迟庆国, 崔爽, 张天栋, 等. 碳化硅晶须/环氧树脂复合介质非线性电导特性研究[J]. 电工技术学报, 2020, 35(20): 4405-4414. Chi Qingguo, Cui Shuang, Zhang Tiandong, et al.Study on nonlinear characteristics on conductivity of silicon carbide whisker/epoxy resin composites[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4405-4414. [21] Gao Yanfeng, Liang Xidong, Bao Weining, et al.Effects of liquids immersion and drying on the surface properties of HTV silicone rubber: characterization by contact angle and surface physical morphology[J]. High Voltage, 2019, 4(1): 49-58. [22] Gao Yanfeng, Liang Xidong, Bao Weining, et al.Degradation characteristics of epoxy resin of GFRP rod in the decay-like fracture of composite insu- lator[J]. IEEE Transactions on Dielectrics and Elec- trical Insulation, 2019, 26(1): 107-114. [23] Liang Xidong, Bao Weining, Gao Yanfeng.Decay- like fracture mechanism of silicone rubber composite insulator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 110-119. [24] Wang Jiafu, Liang Xidong, Gao Yanfeng.Failure analysis of decay-like fracture of composite insu- lator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(6): 2503-2511. [25] Gao Yanfeng, Liang Xidong, Liu Yingyan, et al.Effect of electrical stress on glass fiber reinforced polymer used in high voltage composite insulator under wet environment[J]. Composites Science and Technology, 2018, 155: 151-159. [26] 高坤, 史汉桥, 孙宝岗, 等. 湿热老化对玻璃纤维/环氧树脂复合材料性能的影响[J]. 复合材料学报, 2016, 33(6): 1147-1152. Gao Kun, Shi Hanqiao, Sun Baogang, et al.Effects of hydro-thermal aging on properties of glass fiber/ epoxy composites[J]. Acta Materiae Composites Sinica, 2016, 33(6): 1147-1152. [27] Schrijver C, Herden A, Kgrner H.A time based model for the dielectric ageing of fiber reinforced polymers (FRP) and its verification in a numerical simu- lation[C]//IEEE Proceedings of Conference on Electrical Insulation and Dielectric Phenomena, Millbrae, USA, 1996: 398-403. [28] Schrijver C, Herden A, Kgrner H.A chemical approach to the dielectric aging of fibre-reinforced polymer (FRP) insulators[J]. International Transa- ctions on Electrical Energy Systems, 1997, 7(2): 221-222. [29] Pavankiran V, Toshio N, Raman P S.Inverse analysis for transient moisture diffusion through fiber- reinforced composites[J]. Acta Materialia, 2003, 51: 177-193. [30] Collings T A, Stone D E W. Hygrothermal effects in CFRP laminates: strains induced by temperature and moisture[J]. Composites, 1985, 16(4): 307-316. [31] Gao Yanfeng, Liang Xidong, Bao Weining, et al.Study on liquids diffusion into and relevant corrosion behaviour of glass fibre reinforced polymer used in high voltage composite insulator[J]. The Institution of Engineering and Technology, 2020, 5(1): 53-61. [32] 曾磊磊. 复合绝缘子异常发热及湿热老化特性研究[D]. 广州: 华南理工大学, 2019. [33] Lee M C, Peppas N A.Models of moisture transport and moisture-induced stresses in epoxy composites[J]. Journal of Composite Materials, 1993, 27(12): 1146-1171. [34] Hahn H T.Hygrothermal damage in graphite/epoxy laminates[J]. Journal of Engineering Materials and Technology, 1987, 109: 3-11. [35] 辛东嵘. 湿热环境中环氧树脂力学性能和界面破坏机理的研究[D]. 广州: 华南理工大学, 2013. [36] 何文佳. UH_L/EP复合材料吸湿行为及吸湿应力的有限元分析[D]. 广州: 华南理工大学, 2011. [37] 袁之康. 高湿环境下复合绝缘子材料劣化特性及机理[D]. 北京: 华北电力大学, 2019.