Control Design and Parameter Optimization on Secondary Side of Electric Vehicle Wireless Charging System Based on H∞ Nonlinear Controller
Zhao Jingying1,2, Zhang Zhenyuan1,2, Zhang Ke1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China;
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Aiming at the fast charging mode of variable voltage intermittent charging for power battery packs of electric vehicle, a secondary control method based on H∞ nonlinear controller for SP magnetic coupling resonance wireless power transfer (MCR-WPT) system was proposed. The output voltage characteristics of SP MCR-WPT system were analyzed based on its mathematical model. The control strategy on the secondary side was determined, and the H∞ nonlinear controller for DC-DC converter on the secondary side was designed. A multi-objective and multi-constraint algorithm (NSGA-Ⅱ) was used to automatically optimize the controller parameters during variable voltage intermittent charging process. As the results, rise time, steady-state error and robustness of parameter disturbances in the closed-loop system are effectively improved. Then, the anti-jamming simulation of Buck converter and variable voltage intermittent charging characteristics simulation of the system were carried out. The simulation results show that the system can realize variable voltage intermittent charging, and has strong robustness and good dynamic response. Finally, the output characteristic experiment of the system was designed. The experimental results verify the effectiveness of the H∞ nonlinear controller and its parameter optimization proposed in this paper.
赵靖英, 张振远, 张珂. 基于H∞非线性控制器的电动汽车无线充电系统的副边控制设计与参数优化[J]. 电工技术学报, 2022, 37(3): 566-577.
Zhao Jingying, Zhang Zhenyuan, Zhang Ke. Control Design and Parameter Optimization on Secondary Side of Electric Vehicle Wireless Charging System Based on H∞ Nonlinear Controller. Transactions of China Electrotechnical Society, 2022, 37(3): 566-577.
[1] 薛明, 杨庆新,章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568.
Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568.
[2] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380.
Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Overview of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1353-1380.
[3] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568.
Wu Xusheng, Sun Pan, Yang Shenqin, et al.Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1559-1568.
[4] 焦宇峰, 李锐杰, 宋国兵. 磁耦合谐振式无线电能传输系统特性的研究及优化[J]. 电力系统保护与控制, 2020, 48(9): 112-120.
Jiao Yufeng, Li Ruijie, Song Guobing.Research and optimization of transmission characteristics of magnetically coupled resonant wireless transmission system[J]. Power System Protection and Control, 2020, 48(9): 112-120.
[5] 王佩月, 左志平, 孙跃, 等. 基于双侧LCC的全双工无线电能传输能量信号并行传输系统[J]. 电工技术学报, 2021, 36(23): 4981-4991.
Wang Peiyue, Zuo Zhiping, Sun Yue, et al.Full-duplex simultaneous wireless power and data transfer system based on double-sided LCC topology[J]. Transactions of China Electrotechnical Society, 2021, 36(23): 4981-4991.
[6] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(下篇)[J]. 电工技术学报, 2020, 38(8): 1662-1678.
Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles:part Ⅱ[J]. Transactions of China Electrotechnical Society, 2020, 38(8): 1662-1678.
[7] 陈亚爱, 邱欢, 周京华, 等. 铅酸蓄电池充电控制策略[J]. 电源技术, 2017, 41(4): 654-657.
Chen Yaai, Qiu Huan, Zhou Jinghua, et al.Charging control strategy of lead acid battery[J]. Chinese Journal of Power Sources, 2017, 41(4): 654-657.
[8] Patil D, Mcdonough M K, Miller J M, et al.Wireless power transfer for vehicular applications: overview and challenges[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 3-37.
[9] Lovison G, Sato M, Imura T, et al.Secondary-side-only simultaneous power and efficiency control for two converters in wireless power transfer system[C]//IEEE IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, 2015: 4824-4829.
[10] Li Hongchang, Li Jie, Wang Kongping, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3998-4008.
[11] Yeo T, Kwon D, Khang S, et al.Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank[J]. IEEE Transactions on Power Electronics, 2017, 32(1): 471-478.
[12] Yang Yun, Zhong Wenxing, Kiratipongvoot S, et al.Dynamic improvement of series-series compensated wireless power transfer systems using discrete sliding mode control[J]. IEEE Transactions on Power Electronics, 2018, 33(7): 6351-6360.
[13] 梅生伟, 申铁龙, 刘康志. 现代鲁棒控制理论与应用[M]. 北京: 清华大学出版社, 2008.
[14] 苏玉刚, 陈苓芷, 唐春森, 等. 基于NSGA-Ⅱ算法的ECPT 系统PID 参数寻优及输出稳压控制[J]. 电工技术学报, 2016, 31(19): 106-114.
Su Yugang, Chen Lingzhi, Tang Chunsen, et al.Evolutionary multi-objective optimization of PID parameters for output voltage regulation in ECPT system based on NSGA-Ⅱ[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 106-114.