Abstract:The accurate estimation of the state of health (SOH) of lithium-ion batteries is a key technology in battery management system (BMS). This paper presents an online SOH prediction method combined with data-driven and empirical models. Through incremental capacity analysis (ICA), the time spent under two voltage rise segments with high correlation with SOH was identified as the external health factor (HF) of the battery, and a data-driven model of battery aging was established using gaussian process regression (GPR). The data-driven model was used to predict the SOH of the battery in the initial working period, and the exponential empirical model was fitted with the predicted values. Then the SOH of the subsequent cycle was predicted by the exponential model. And the parameters of the exponential model were modified by the observer every fixed number of cycles to ensure the accuracy of SOH prediction. The experimental results show that the proposed method can keep the prediction accuracy at a high level while reducing the burden of battery monitoring equipment.
王萍, 弓清瑞, 张吉昂, 程泽. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212.
Wang Ping, Gong Qingrui, Zhang Ji’ang, Cheng Ze. An Online State of Health Prediction Method for Lithium Batteries Based on Combination of Data-Driven and Empirical Model. Transactions of China Electrotechnical Society, 2021, 36(24): 5201-5212.
[1] Sarmah S B, Kalita P, Garg A, et al.A review of state of health (SoH) estimation of energy storage systems: challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(4): 040801. [2] Rahimi-Eichi H, Ojha U, Baronti F, et al.Battery management system: an overview of its application in the smart grid and electric vehicles[J]. IEEE Indu- strial Electronics Magazine, 2013, 7(2): 4-16. [3] 孙丙香, 任鹏博, 陈育哲, 等. 锂离子电池在不同区间下的衰退影响因素分析及任意区间的老化趋势预测[J]. 电工技术学报, 2021, 36(3): 666-673. Sun Bingxiang, Ren Pengbo, Chen Yuzhe, et al.Analysis of influencing factors of degradation under different interval stress and prediction of aging trend in any interval for lithium-ion battery[J]. Transa- ctions of China Electrotechnical Society, 2021, 36(3): 666-673. [4] 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J]. 电工技术学报, 2020, 35(18): 3979-3992. Jiao Ziquan, Fan Xingming, Zhang Xin, et al.State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3979-3992. [5] Ng K S, Moo C S, Chen Y P, et al.Enhanced coulomb counting method for estimating state-of- charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9): 1506-1511. [6] Love C T, Virji M B V, Rocheleau R E, et al. State-of- health monitoring of 18650 4S packs with a single point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519. [7] Galeotti M, Cinà L, Giammanco C, et al.Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686. [8] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948. Yan Xiangwu, Deng Haoran, Guo Qi, et al.Study on the state of health detection of power batteries based on adaptive unscented Kalman filters and the battery echelon utilization[J]. Transactions of China Elec- trotechnical Society, 2019, 34(18): 3937-3948. [9] Han Xuebing, Ouyang Minggao, Lu Languang, et al.Simplification of physics-based electrochemical model for lithium-ion battery on electric vehicle. part II: pseudo-two-dimensional model simplification and state of charge estimation[J]. Journal of Power Sources, 2015, 278: 802-813. [10] Han Xuebing, Ouyang Minggao, Lu Languang, et al.A comparative study of commercial lithium ion battery cycle life in electric vehicle: capacity vehicle: capacity loss estimation[J]. Journal of Power Sources, 2014, 268: 658-669. [11] Qin Wei, Lü Huichun, Liu Chengliang, et al.Remaining useful life prediction for lithium-ion batteries using particle filter and artificial neural network[J]. Industrial Management & Data Systems, 2020, 120(2): 312-328. [12] 张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136. Zhang Tingting, Yu Ming, Li Bin, et al.Capacity prediction of lithium-ion batteries based on Wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136. [13] Liu Jian, Chen Ziqiang.Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484. [14] Lin Mingqiang, Zeng Xianping, Wu Ji.State of health estimation of lithium-ion battery based on an adaptive tunable hybrid radial basis function net- work[J]. Journal of Power Source, 2021, 504: 230063. [15] 韦海燕, 陈孝杰, 吕治强, 等. 灰色神经网络模型在线估算锂离子电池SOH[J]. 电网技术, 2017, 41(12): 4038-4044. Wei Haiyan, Chen Xiaojie, Lü Zhiqiang, et al.Online estimation of lithium-ion battery state of health using grey neural network[J]. Power System Technology, 2017, 41(12): 4038-4044. [16] Chang Chun, Wang Qiyue, Jiang Jiuchun, et al.Lithium-ion battery state of health estimation using the incremental capacity and Wavelet neural networks with genetic algorithm[J]. Journal of Energy Storage, 2021, 38: 102570. [17] Liu Datong, Zhou Jianbao, Liao Haitao, et al.A health indicator extraction and optimization frame- work for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2015, 45(6): 915-928. [18] Guo Peiyao, Cheng Ze, Yang Lei.A data-driven remaining capacity estimation approach for lithium- ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. [19] Tian Jinpeng, Xiong Rui, Shen Weixiang.State-of- health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10363-10373. [20] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transa- ctions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [21] 周娟, 孙啸, 刘凯, 等. 联合扩展卡尔曼滤波的滑模观测器SOC估算算法研究[J]. 中国电机工程学报, 2021, 41(2): 692-703. Zhou Juan, Sun Xiao, Liu Kai, et al.Research on the SOC estimation algorithm of combining sliding mode observer with extended Kalman filter[J]. Proceedings of the CSEE, 2021, 41(2): 692-703. [22] 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. Sun Dong, Chen Xikun.Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. [23] Birkl C R.Diagnosis and prognosis of degradation in lithium-ion batteries[D]. Oxford: University of Oxford, 2017. [24] He Jiangtao, Wei Zhongbao, Bian Xiaolei, et al.State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage- capacity model[J]. IEEE Transactions on Trans- portation Electrification, 2020, 6(2): 417-426. [25] 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277-2287. Yang Shengjie, Luo Bingyang, Wang Jing, et al.State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electro- technical Society, 2021, 36(11): 2277-2287.