Optimizing Research on Hybrid Energy Storage System of High Speed Railway
Yuan Jiaxin1,2, Qu Kai1, Zheng Xianfeng1, Min Yongzhi2
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. School of Automation and Electrical Engineering Lanzhou Jiaotong University Lanzhou 730070 China
Abstract:With the increase of the mileage and shift of high-speed railway in China, the braking power and energy fed back to the power grid by high-speed railway locomotive when braking is increasing. In order to make full use of this energy, a hybrid energy storage system based on supercapacitors and lithium-ion batteries and its optimal configuration method are proposed in order to obtain the maximum economic benefits. Firstly, the mathematical model of hybrid energy storage system is established. Secondly, the economic optimization model of daily operation cost of high-speed railway traction power supply system is established. Taking the lowest cost as the optimization objective, the energy storage configuration scheme is optimized by using the mixed integer linear programming method. Finally, taking the actual load of a domestic high-speed railway station as an example, the results show that the economic benefit is the highest when the hybrid energy storage system is used to partially absorb regenerative braking energy, and the total daily cost is saved by 3%.
袁佳歆, 曲锴, 郑先锋, 闵永智. 高速铁路混合储能系统容量优化研究[J]. 电工技术学报, 2021, 36(19): 4161-4169.
Yuan Jiaxin, Qu Kai, Zheng Xianfeng, Min Yongzhi. Optimizing Research on Hybrid Energy Storage System of High Speed Railway. Transactions of China Electrotechnical Society, 2021, 36(19): 4161-4169.
[1] 李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报, 2010, 32(4): 119-124. Li Qunzhan.On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. [2] 肖非然, 倪周, 闵永智, 等. 一种基于多智能体的多站协同高速铁路不平衡补偿方法[J]. 电工技术学报, 2020, 35(16): 3518-3528. Xiao Feiran, Ni Zhou, Min Yongzhi, et al.Unbalanced compensation method of multi-station cooperative for high-speed railway based on multi-agent[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3518-3528. [3] 孙帮成. CRH380BL型动车组[M]. 北京: 中国铁道出版社, 2016. [4] 胡海涛, 陈俊宇, 葛银波, 等. 高速铁路再生制动能量储存与利用技术研究[J]. 中国电机工程学报, 2020, 40(1): 246-256. Hu Haitao, Chen Junyu, Ge Yinbo, et al.Research on regenerative braking energy storage and utilizationtechnology for high-speed railways[J]. Proceedings of the CSEE, 2020, 40(1): 246-256. [5] 夏欢, 杨中平, 杨志鸿, 等. 基于机车运行状态的城轨超级电容储能系统控制策略[J]. 电工技术学报, 2017, 32(21): 16-23. Xia Huan, Yang Zhongping, Yang Zhihong, et al.Control strategy of supercapacitor energy storage system for urban rail transit based on operating status of trains[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 16-23. [6] 诸斐琴, 杨中平, 林飞, 等. 城轨交通牵引供电系统参数与储能系统容量配置综合优化[J]. 电工技术学报, 2019, 34(3): 135-144. Zhu Feiqin, Yang Zhongping, Lin Fei, et al.Synthetic optimization of traction power parameters and energy storage systems in urban rail transit[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 135-144. [7] 信月, 杨中平, 林飞, 等. 基于参数反馈的城轨交通超级电容健康状态估算[J]. 电工技术学报, 2019, 34(1): 396-404. Xin Yue, Yang Zhongping, Lin Fei, et al.Research on state of health estimation of supercapacitor in urban rail transit based on parameter feedback[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 396-404. [8] 马丽洁, 廖文江, 高宗余. 城轨机车车载超级电容储能控制策略研究[J]. 电工技术学报, 2015, 30(增刊1): 63-68. Ma Lijie, Liao Wenjiang, Gao Zongyu.Research on ac side series supercapacitor regenerative braking energy storage system control strategy of railway vehicle[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 63-68. [9] Barrero R, Tackoen X, Mierlo J V.Improving energy efficiency in public transport: Stationary supercapacitor-based energy storage systems for a metro network[C]//IEEE Vehicle Power & Propulsion Conference, 2008: 1-8. [10] Falvo M C, Lamedica R, Bartoni R, et al.Energy saving in metro-transit systems: Impact of braking energy management[C]//International Symposium on Power Electronics Electrical Drives Automation & Motion, 2010: 1374-1380. [11] Xia Huan, Chen Huaixin, et al.Optimal energy management location and size for stationary energy storage system in a metro line based on genetic algorithm[J]. Energies, 2015, 8: 11618-11640. [12] Teymourfar R, Asaei B, Iman-Eini H, et al.Stationary super-capacitor energy storage system to save regenerative braking energy in a metro line[J]. Energy Conversion & Management, 2012, 56: 206-214. [13] 安星锟, 杨中平, 王玙, 等. 基于改进型凸优化算法的有轨电车混合储能系统容量配置帕累托解集[J]. 电工技术学报, 2020, 35(14): 3116-3125. An Xingkun, Yang Zhongping, Wang Yu, et al.Pareto solution set of tram hybrid energy storage system capacity allocation based on improved convex optimization[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3116-3125. [14] 王玙, 杨中平, 林飞, 等. 有轨电车车载混合储能系统动态比例分配策略[J]. 电工技术学报, 2019, 34(增刊1): 405-413. Wang Yu, Yang Zhongping, Lin Fei, et al.Dynamic ratio distribution strategy for hybrid storage system of tram[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 405-413. [15] 李峰, 杨中平, 王玙, 等. 基于庞特里亚金极小值原理的混合储能有轨电车能量管理策略[J]. 电工技术学报, 2019, 34(增刊2): 752-759. Li Feng, Yang Zhongping, Wang Yu, et al.Energy management strategy of tram with hybrid energy storage system based on Pontryagin's minimum principle[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 752-759. [16] 张欣. 电气化铁路动车组独立站点型再生制动能量回馈装置研究[D]. 成都: 西南交通大学, 2017. [17] 吴昊. 电气化铁路再生制动能量回馈系统控制技术研究[D]. 成都: 西南交通大学, 2017. [18] 范琪琦. 基于MMC电气化铁路再生制动能量回收装置研究[D]. 成都: 西南交通大学, 2018. [19] Sebastian D L T, Sanchez-Racero A J, Aguado J A, et al. Optimal sizing of energy storage for regenerative braking in electric railway systems[J]. IEEE Transa-ctions on Power Systems, 2015, 30(3): 1492-1500. [20] Engr B, Klkran H C, Hüseyin Akdemir, et al.Energy management of a smart railway station considering regenerative braking and stochastic behaviour of ESS and PV generation[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1041-1050. [21] José A A, Antonio J S R, Sebastián T. Optimal operation of electric railways with renewable energy and electric storage systems[J]. IEEE Transactions on Smart Grid, 2018, 9(2): 993-1001. [22] Eduard B M, Francisco C G, Glenny I, et al.A review of energy storage technologies for large scale photovoltaic power plants[J]. Applied Energy, 2020, 274: 115213. [23] 傅旭, 李富春, 杨欣, 等. 基于全寿命周期成本的储能成本分析[J]. 分布式能源, 2020, 5(3): 35-38. Fu Xu, Li fuchun, Yang Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020, 5(3): 35-38.