Abstract:The permanent magnet linear machine with primary excitation (PE-PMLM) is a new type of special machine derived from the traditional permanent magnet linear machine, which has the advantages of high thrust force density, highefficiency, high precision and high reliability. In the field of long stroke direct drive linear motion, it exhibits unique performance and cost advantages, and has high research value as well as broad application prospect. This paper reviews and summarizes the current status and development trend of the PE-PMLM technology. Based on the flux modulation theory, the harmonic distribution and thrust generation principle of the PE-PMLM are revealed. From the perspective of topology, the technical points and research progress of various kinds of PE-PMLM are reviewed. Based on the characteristics of PE-PMLM, high performance control strategies are introduced. Finally, comprehensive performances of all kinds of PE-PMLM are compared and analyzed, and the future development direction is discussed.
沈燚明, 卢琴芬. 初级励磁型永磁直线电机研究现状与展望[J]. 电工技术学报, 2021, 36(11): 2325-2343.
Shen Yiming, Lu Qinfen. Overview of Permanent Magnet Linear Machines with Primary Excitation. Transactions of China Electrotechnical Society, 2021, 36(11): 2325-2343.
[1] 马伟明,王东,程思为,等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. Ma Weiming, Wang Dong, Cheng Siwei, et al.Common basic scientific problems and development of leading-edge technology of highperformance motor system[J]. Proceedings of the CSEE,2016, 36(8):2025-2035. [2] 卢琴芬, 沈燚明, 叶云岳. 永磁直线电动机结构及研究发展综述[J]. 中国电机工程学报, 2019, 39(9): 2575-2588. Lu Qinfen, ShenYiming, Ye Yunyue. Development of permanent magnet linear synchronous motors structure and research[J]. Proceedings of the CSEE,2019, 39(9):2575-2588. [3] 沈燚明. 新型初级并联式混合励磁变磁阻直线电机研究[D]. 杭州: 浙江大学, 2020. [4] Zhu Z Q, Chen X, Chen J T, et al.Novel linear flux-switching permanent magnet machines[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 2948-2953. [5] Wang C F, Shen J X, Wang L L, et al.A novel permanent magnet flux-switching linear motor[C]// 2008 4th IET Conference on Power Electronics, Machines and Drives, York, UK, 2008: 116-119. [6] Min W, Chen J T, Zhu Z Q, et al.Optimization and comparison of novel E-core and C-core linear switched flux PM machines[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2134-2141. [7] Lu Qinfen, Li Yanxin.Novel linear switched-flux PM machine with 9/10 primary/secondary pole number combination[J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2015, 34(6): 1656-1672. [8] Liu Jiabao, Chen Yi, Lu Qinfen, et al.Optimization and comparison of C-core and E-core linear switched-flux PM machines with odd primary poles[C]//2015 18th International Conference on Electrical Machines and Systems, Pattaya, Thailand, 2015: 254-259. [9] 刘嘉宝. 奇数极直线开关磁链永磁电机少永磁结构的分析与优化[D]. 杭州: 浙江大学, 2016. [10] 蔡炯炯, 卢琴芬, 叶云岳. 一种新型多齿开关磁链直线电机的关键问题[J]. 电机与控制学报, 2012, 16(3): 8-14. CaiJiongjiong, Lu Qinfen, Ye Yunyue. Key problems for a novel multi-tooth flux-switching linear motor[J]. Electric Machine and Control, 2012, 16(3): 8-14. [11] 蔡炯炯. 新型开关磁链永磁直线电机研究[D]. 杭州: 浙江大学, 2014. [12] Wang Jiabin, Wang Weiya, Atallah K, et al.Design considerations for tubular flux-switching permanent magnet machines[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4026-4032. [13] Yan Liang, Li Wei, Jiao Zongxia, et al.Design and modeling of three-phase tubular linear flux-switching permanent magnet motor[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China, 2014: 2675-2680. [14] Yin Zuosheng, Sui Yi, Han Liang, et al.Research on a tubular flux-switching permanent-magnet linear machine[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-5. [15] Gandhi A, Parsa L.Thrust optimization of a flux-switching linear synchronous machine with yokeless translator[J]. IEEE Transactions on Magnetics, 2013, 49(4): 1436-1443. [16] Gandhi A, Parsa L.Thrust optimization of a five-phase fault-tolerant flux-switching linear synchronous motor[C]//IECON 2012 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012: 2067-2073. [17] Zhang Bangfu, Cheng Ming, Wang Jiabin, et al.Optimization and analysis of a yokeless linear flux-switching permanent magnet machine with high thrust density[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [18] ShenYiming, Lu Qinfen, Li Huanwen, et al. Analysis of a novel double-sided yokeless multitooth linear switched-flux PM motor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1837-1845. [19] Huang Lei, Yu Haitao, Hu Minqiang, et al.Study on a long primary flux-switching permanent magnet linear motor for electromagnetic launch systems[J]. IEEE Transactions on Plasma Science, 2013, 41(5): 1138-1144. [20] 曹瑞武, 张铮, 金毅, 等. 次级无轭部双边磁通切换永磁直线电机及其控制[J]. 中国电机工程学报, 2017, 37(22): 6585-6593. Cao Ruiwu, Zhang Zheng, Jin Yi, et al.Double-sided linear flux-switching permanent magnet motor withyokeless secondary and control System[J]. Proceedings of the CSEE,2017, 37(22): 6585-6593. [21] Cao Rui, Jin Yi, Zhang Zheng, et al.A new double-sided linear flux-switching permanent magnet motor with yokeless mover for electromagnetic launch system[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 680-690. [22] Jin Menjia, Wang Canfei, ShenJianxin, et al. A modular permanent-magnet flux-switching linear machine with fault-tolerant capability[J]. IEEE Transactions on Magnetics, 2009, 45(8): 3179-3186. [23] Cao Ruiwu, Cheng Ming, MiC C, et al. Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2165-2175. [24] 曹瑞武, 程明, 花为, 等. 磁路互补型模块化磁通切换永磁直线电机[J]. 中国电机工程学报, 2011, 31(6): 58-65. Cao Ruiwu, Cheng Ming, Hua Wei, et al.Novel modularized flux-switching permanent magnet linear machine with complementary magnetic circuits[J]. Proceedings of the CSEE, 2011, 31(6): 58-65. [25] Cao Ruiwu, Cheng Ming, Mi CC, et al.Modeling of a complementary and modular linear flux-switching permanent magnet motor for urban rail transit applications[J]. IEEE Transactions on Energy Conversion, 2012, 27(2): 489-497. [26] Cao Ruiwu, Cheng Ming, Hua Wei.Investigation and general design principle of a new series of complementary and modular linear FSPM motors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5436-5446. [27] Cao Ruiwu, Cheng Ming, Mi CC, et al.Comparison of complementary and modular linear flux-switching motors with different mover and stator pole pitch[J]. IEEE Transactions on Magnetics, 2013, 49(4): 1493-1504. [28] Farrok O, Islam M R, Sheikh M R I, et al. A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7600-7608. [29] Zhang Zongsheng, Tang Xu, Zhang Chao, et al.Novel decoupling modular permanent magnet flux-switching linear motor[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7603-7612. [30] Cao Ruiwu, Cheng Ming, Mi CC, et al.A hybrid excitation flux-switching permanent magnet linear motor for urban rail transit[C]//2011 IEEE Vehicle Power and Propulsion Conference,Chicago, IL, USA,2011: 1-5. [31] Hwang Chang-Chou, Li Ping-Lun, Liu Cheng-Tsung.Design and analysis of a novel hybrid excited linear flux switching permanent magnet motor[J]. IEEE Transactions on Magnetics, 2012, 48(11): 2969-2972. [32] Liu Cheng-Tsung, Hwang Chang-Chou, Li Ping-Lun, et al.Design optimization of a double-sided hybrid excited linear flux switching PM motor with low force ripple[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [33] 曾志强, 卢琴芬, 叶云岳. 一种新型九相模块化混合励磁开关磁链直线电机[J]. 中国电机工程学报, 2017, 37(21): 6158-6167. Zeng Zhiqiang, Lu Qinfen, Ye Yunyue.A novel nine-phase modular hybrid-excited flux-switching linear machine[J]. Proceedings of the CSEE, 2017, 37(21): 6158-6167. [34] Wang Canfei, ShenJianxin, Wang Yu, et al. A new method for reduction of detent force in permanent magnet flux-switching linear motors[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2843-2846. [35] Wang Canfei, ShenJianxin. A method to segregate detent force components in permanent-magnet flux-switching linear machines[J]. IEEE Transactions on Magnetics, 2012, 48(5): 1948-1955. [36] 沈建新, 王灿飞, 费伟中, 等. 永磁开关磁链直线电机若干优化设计方法[J]. 电工技术学报, 2013, 28(11): 1-8. ShenJianxin, Wang Canfei, FeiWeizhong, et al. Some optimal design methods for permanent magnet flux switching linear machines[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 1-8. [37] Zhao Jing, MouQunasong, GuoKeyu, et al. Reduction of the detent force in a flux-switching permanent magnet linear motor[J]. IEEE Transactions on Energy Conversion, 2019, 34(3): 1695-1705. [38] Boldea I, Wang Congxiao, Yang Bin, et al.Analysis and design of flux-reversal linear permanent magnet oscillating machine[C]//Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), St. Louis, MO, USA,1998: 136-143. [39] Chung S, Lee H, Hwang S.A novel design of linear synchronous motor using FRM topology[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1514-1517. [40] Chung S, Kang D, Chang J, et al.New configuration of flux reversal linear synchronous motor[C]//2007 International Conference on Electrical Machines and Systems, Seoul, South Korea, 2007: 864-867. [41] Chung S, Lee H, Hong D, et al.Development of flux reversal linear synchronous motor for precision position control[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 443-450. [42] Chung S, Kim J, Woo B, et al.Dynamic simulation and experimental verification of flux reversal linear synchronous motor[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(2): 175-181. [43] Gandhi A, Mohammadpour A, Sadeghi S, et al.Doubled-sided FRLSM for long-stroke safety-critical applications[C]//IECON 2011 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 2011: 4186-4191. [44] Zhao Wenxiang, JiJinghua, Liu Guohai, et al. Design and analysis of a new modular linear flux-reversal permanent-magnet motor[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5. [45] Xu Liang, Liu Guohai, Zhao Wexiang, et al.Analysis of new modular linear flux reversal permanent magnet motors[J]. IEEE Transactions on Magnetics, 2015, 51(11): 1-4. [46] Xu Liang, Zhao Wenxiang, JiJinghua, et al. Design and analysis of a new linear hybrid excited flux reversal motor with inset permanent magnets[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [47] Xu Liang, Liu Guohai, Zhao Wenxiang, et al.Comparison of two linear hybrid excitation flux reversal machines with different permanent-magnet arrays[C]//2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 2017: 252-256. [48] Kou Baoquan, Luo Jun, Yang Xiaobao, et al.Modeling and analysis of a novel transverse-flux flux-reversal linear motor for long-stroke application[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6238-6248. [49] Luo Jun, Kou Baoquan, Zhang He, et al.Development of a consequent pole transverse flux permanent magnet linear machine with passive secondary structure[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 39-44. [50] Luo Jun, Kou Baoquan, Yang Xiaobao, et al.Modelling of a dual-side excited transverse flux permanent magnet linear motor[C]//2019 22nd International Conference on Electrical Machines and Systems, Harbin, China, 2019: 1-5. [51] Luo Jun, Kou Baoquan, Zhou Yiheng, et al.Analysis and design of an E-core transverse-flux flux-reversal linear motor[C]//2016 19th International Conference on Electrical Machines and Systems,Chiba, Japan, 2016: 1-5. [52] Dong Dingfeng, Huang Wenxin, Bu Feifei, et al.Modeling and optimization of a tubular permanent magnet linear motor using transverse-flux flux-reversal topology[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1382-1391. [53] Zhao Xing, NiuShuangxia. Development of a novel transverse flux tubular linear machine with parallel and complementary pm magnetic circuit for precision industrial processing[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4945-4955. [54] GuoKaikai, Fang Shuhua, Lin Heyun, et al. 3-D analytical analysis of magnetic field of flux reversal linear-rotary permanent-magnet actuator[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-5. [55] GuoKaikai, GuoYouguang. Key parameter design and analysis of flux reversal linear rotary permanent magnet actuator[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. [56] Iwabuchi N, Kawahara A, Kume T, et al.A novel high-torque reluctance motor with rare-earth magnet[J]. IEEE Transactions on Industry Applications, 1994, 30(3): 609-614. [57] Mueller M A, Baker N J.Modelling the performance of the vernier hybrid machine[J]. IEE Proceedings - Electric Power Applications, 2003, 150(6): 647-654. [58] Raihan M A H, Baker N J, Smith K J, et al. An E-core linear veriner hybrid permanent magnet machine with segmented translator for direct drive wave energy converter[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-6. [59] Baker N J, Raihan M A H, Almoraya A A. A cylindrical linear permanent magnet vernier hybrid machine for wave energy[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 691-700. [60] Raihan M A H, Baker N J, Smith K J, et al. Development and testing of a novel cylindrical permanent magnet linear generator[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 3668-3678. [61] Du Yi, Chau K T, Cheng Ming, et al.Theory and comparison of the linear stator permanent magnet vernier machine[C]//2011 International Conference on Electrical Machines and Systems, Beijing, China, 2011: 1-4. [62] Du Yi, Chau K T, Cheng Ming, et al.Design and analysis of linear stator permanent magnet verniermachines[J]. IEEE Transactions on Magnetics, 2011, 47(10): 4219-4222. [63] 杜怿, 程明, 邹国棠. 初级永磁型游标直线电机设计与静态特性分析[J]. 电工技术学报, 2012, 27(11): 22-30. Du Yi, Cheng Ming, Chau K T.Design and analysis of a new linear primarypermanent magnet vernier machine[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 22-30. [64] Du Yi, Cheng Ming, Chau K T.Simulation of the linear primary permanent magnet vernier machine system for wave energy conversion[C]//2013 International Conference on Electrical Machines and Systems, Busan, South Korea, 2013: 262-266. [65] Du Yi, Cheng Ming, Chau K T, et al.Comparison of linear primary permanent magnet vernier machine and linear vernier hybrid machine[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [66] Du Yi, Cheng Ming, Chau K T, et al.Linear primary permanent magnet vernier machine for wave energy conversion[J]. IET Electric Power Applications, 2015, 9(3): 203-212. [67] 杜怿, 邹春花, 朱孝勇, 等. 初级永磁型游标直线电机绕组连接及其电磁特性比较[J]. 电工技术学报, 2017, 32(3): 130-138. Du Yi, ZouChunhua, Zhu Xiaoyong, et al. Comparison of winding arrangements and electromagnetic characteristicsof a linear primary permanent magnet vernier machine[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 130-138. [68] Du Yi, Chau K T, Cheng Ming, et al.A linear stator permanent magnet vernier HTS machine for wave energy conversion[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5202505. [69] Xiao Feng, Du Yi, Wang Yubin, et al.Modeling and analysis of a linear stator permanent-magnet vernier HTS machine[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3): 1-4. [70] Liu Xianxing, ZouChunhua, Du Yi, et al. A linear consequent pole stator permanent magnet vernier machine[C]//2014 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 1753-1756. [71] Liu Guohai, Jiang Shan, Zhao Wenxiang, et al.Modular reluctance network simulation of a linear permanent-magnet vernier machine using new mesh generation methods[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5323-5332. [72] Liu Guohai, Ding Ling, Zhao Wenxiang, et al.Nonlinear equivalent magnetic network of a linear permanent magnet vernier machine with end effect consideration[J]. IEEE Transactions on Magnetics, 2018, 54(1): 1-9. [73] JiJinghua, Zhao Wenxiang, Fang Zhuoya, et al. A novel linear permanent-magnet vernier machine with improved force performance[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-10. [74] Zhao Wenxiang, ZhengJunqiang, Wang Jiabin, et al. Design and analysis of a linear permanent-magnet vernier machine with improved force density[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2072-2082. [75] Wang Shiyuan, Zhao Wenxiang, JiJinghua, et al. Magnetic gear ratio effects on performances of linear primary permanent magnet vernier motor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. [76] ZhongHuan, Liu Guohai, Xu Liang. Comparative study of linear primary permanent-magnet vernier machine and conventional linear permanent-magnet machine[C]// 2019 22nd International Conference on Electrical Machines and Systems,Harbin, China, 2019: 1-5. [77] Ma Anqi, Zhao Wenxiang, Xu Liang, et al.Influence of armature windings pole numbers on performances of linear permanent-magnet verniermachines[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 385-394. [78] Wang Shiyuan, Zhao Wenxiang, Kang Mei.Design and analysis of double-sided linear primary permanent magnet vernier motor[C]//2016 19th International Conference on Electrical Machines and Systems, Chiba, Japan, 2016: 1-5. [79] Zhao Wenxiang, Wang Shiyuan, JiJinghua, et al. A new mover separated linear magnetic-field modulated motor for long stroke applications[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5. [80] Shen Yang, Kang Mei, JiJinghua, et al. Design and analysis of a novel modular six-phase linear permanent-magnet vernier machine[C]//2017 20th International Conference on Electrical Machines and Systems,Sydney, NSW, Australia, 2017: 1-5. [81] Yao Tian, Zhao Wenxiang, BianFangfang, et al. Design and analysis of a novel modular-stator tubular permanent-magnet verniermotor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [82] Almoraya A A, Baker N J, Smith K J, et al.Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters[C]//2017 IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 2017: 1-7. [83] Raihan M A H, Baker N J, Smith K J, et al. Investigation of a doubly salient halbach array linear permanent magnet machine for wave energy converters[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-5. [84] Almoraya A A, Baker N J, Smith K J, et al.A new configuration of a consequent pole linear vernier hybrid machine with V-shape magnets[C]//2018 XIII International Conference on Electrical Machines, Alexandroupoli, Greece, 2018: 2002-2008. [85] Baker N J, Raihan M A H, Almoraya A A, et al. Evaluating alternative linear vernier hybrid machine topologies for integration into wave energy converters[J]. IEEE Transactions on Energy Conversion, 2018, 33(4): 2007-2017. [86] Raihan M A H, Baker N J, Smith K J, et al. Development of low translator mass linear Vernier machine for wave energy power take off[J]. The Journal of Engineering, 2019, 2019(18): 5224-5228. [87] Almoraya A A, Baker N J, Smith K J, et al.Design and analysis of a flux-concentrated linear vernier hybrid machine with consequent poles[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4595-4604. [88] Raihan M A H, Baker N, Smith K, et al. Linear consequent pole halbach array flux reversal machine[J]. The Journal of Engineering, 2019, 2019(17): 4560-4565. [89] Cao Ruiwu, Cheng Ming, Mi Chris, et al.A linear doubly salient permanent-magnet motor with modular and complementary structure[J]. IEEE Transactions on Magnetics, 2011, 47(12): 4809-4821. [90] Zhao Wenxiang, Zhu Jian, JiJinghua, et al. Improvement of power factor in a double-side linear flux-modulation permanent-magnet motor for long stroke applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3391-3400. [91] Zhao Wenxiang, Ma Anqi, JiJinghua, et al. Multiobjective optimization of a double-side linear vernier pm motor using response surface method and differential evolution[J]. IEEE Transactions on Industrial Electronics, 2020, 67(1): 80-90. [92] ShenYiming, Zeng Zhiqiang, Lu Qinfen, et al. Investigation of a modular linear doubly salient machine with dual-PM in primary yoke and slot openings[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-6. [93] Shoji S, Masayasu F, Katsuhiro H.Studies to decrease cogging force and pulsating thrust in the prototype linear permanent magnet vernier motor[C]//2008 International Conference on Electrical Machines and Systems, Wuhan, China, 2008: 3417-3422. [94] Shimomura S, Takano M. Linear vernier machine with permanent magnets only on armature side[J]. Applied Mechanics and Materials, 2013, 416-417: 233-240. [95] Imada T, Shimomura S.Magnet arrangement of linear PM vernier machine[C]//2014 17th International Conference on Electrical Machines and Systems, Hangzhou, China, 2014: 3642-3647. [96] Ninomiya T, Gasim A, Shimomura S.Magnet arrangement suitable for large air gap length in linear PM vernier motor[C]//2018 International Power Electronics Conference, Niigata, Japan, 2018: 2836-2841. [97] ShenYiming, Zeng Zhiqiang, Lu Qinfen, et al. Design optimization and performance investigation of linear doubly salient slot permanent magnet machines[J]. IEEE Transactions on Industry Applications, 2019, 55(2): 1524-1535. [98] ShenYiming, Lu Qinfen, Huang Xiaoyan. Analysis of a novel linear doubly salient slot permanent magnet motor[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. [99] ShenYiming, Lu Qinfen. Design and analysis of linear hybrid-excited slot permanent magnet machines[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-6. [100] ShenYiming, Lu Qinfen. A novel linear hybrid-excited slot permanent magnet machine with dc-biased sinusoidal current[C]//2019 22nd International Conference on Electrical Machines and Systems, Harbin, China, 2019: 1-5. [101] Lu Qinfen, Yao Yihua, Shi Jiameng, et al.Design and performance investigation of novel linear switched flux PM machines[J]. IEEE Transactions on Industry Applications, 2017, 53(5): 4590-4602. [102] Shuraiji A L, Zhu Z Q, Lu Qinfen.A novel partitioned stator flux reversal permanent magnet linear machine[J]. IEEE Transactions on Magnetics, 2016, 52(1): 1-6. [103] Zeng Zhiqiang, Lu Qinfen.Investigation of novel partitioned-primary hybrid-excited flux-switching linear machines[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9804-9813. [104] Zeng Zhiqiang, ShenYiming, Lu Qinfen, et al. Comparative study of two novel double-sided hybrid-excitation flux-reversal linear motors with surface and interior PM arrangements[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-7. [105] Zeng Zhiqiang, ShenYiming, Lu Qinfen, et al. Investigation of a partitioned-primary hybrid-excited flux-switching linear machine with dual-PM[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3649-3659. [106] 王欣, 程明, 花为, 等. 轨道交通用磁通切换永磁直线电机空间矢量脉宽控制[J]. 微电机, 2013, 46(4): 35-39. Wang Xin, Cheng Ming, Hua Wei, et al.Space-vector PWM control of linear flux-switching permanentmagnet motor on rail transportation[J]. Micromotors, 2013, 46(4): 35-39. [107] 陈仲华, 赵文祥, 张建, 等. 高推力永磁游标直线电机的开放式绕组SVPWM控制[J]. 电工技术学报, 2016, 31(增刊2): 210-218. Chen Zhonghua, Zhao Wenxiang, Zhang Jian, et al.SVPWM control for dual two-level inverter fed open-end winding high thrust permanent magnet vernier linear motor[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 210-218. [108] Cao Ruiwu, Cheng Ming, Zhang Bangfu.Speed control of complementary and modular linear flux-switching permanent-magnet motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4056-4064. [109] Zhang Zheng, Cao Ruiwu, Lu Minghang, et al.Speed control of double-sided linear flux-switching permanent magnet motor system for electromagnetic launch system[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-4. [110] Zhang Yanze, Cao Ruiwu, Jin Yi, et al.Closed-loop position control of complementary and modular linear flux-switching permanent magnet motor[C]//2016 IEEE International Conference on Aircraft Utility Systems, Beijing, China, 2016: 923-926. [111] Zhang Liqi, Cao Ruiwu, Jiang Ning.Direct thrust control of complementary and modular linear flux-switching permanent magnet motor[C]//2017 20th International Conference on Electrical Machines and Systems, Sydney, NSW, Australia, 2017: 1-4. [112] Wu Binyu, Kang Mei, JiJinghua, et al. Direct thrust force control of open-end winding linear vernier permanent-magnet motor with reduced force ripple[C]//IECON 2017 43rd Annual Conference of the IEEE Industrial Electronics Society,Beijing, China, 2017: 3659-3663. [113] 杨瑞. 精密永磁直线同步电机系统扰动抑制方法研究[D]. 哈尔滨: 哈尔滨工业大学,2020. [114] Wang Mingyi, Yang Rui, Tan Qiang, et al.A high-bandwidth and strong robust current control strategy for PMLSM drives[J]. IEEE Access, 2018, 6: 40929-40939. [115] Yang Rui, Wang Mingyi, Li Liyi, et al.Robust predictive current control with variable-gain adaptive disturbance observer for PMLSM[J]. IEEE Access, 2018, 6: 13158-13169. [116] Yang Rui, Wang Mingyi, Li Liyi, et al.Robust predictive current control of PMLSM with extended state modeling based Kalman filter: for time-varying disturbance rejection[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 2208-2221. [117] Yang Rui, Li Liyi, Wang Mingyi, et al.Force ripple compensation and robust predictive current control of PMLSM using augmented generalized proportional integral observer[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021,9(1): 302-315. [118] Bascetta L, Rocco P, Magnani G.Force ripple compensation in linear motors based on closed-loop position-dependent identification[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(3): 349-359. [119] Chen Silu, Tan K K, Huang Sunan, et al.Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(4): 586-594. [120] Zhu Yuwu, Jin Sangmin, Chung K, et al.Control-based reduction of detent force for permanent magnet linear synchronous motor[J]. IEEE Transactions on Magnetics, 2009, 45(6): 2827-2830. [121] Tan K K, Huang S N, Lee T H.Robust adaptive numerical compensation for friction and force ripple in permanent-magnet linear motors[J]. IEEE Transactions on Magnetics, 2002, 38(1): 221-228. [122] Xu Li, Yao Bin.Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 444-452. [123] Yao Bin, Hu Chuxiong, Lu Lu, et al.Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensations[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5): 1149-1159. [124] Lu Lu, Chen Zheng, Yao Bin, et al.Desired compensation adaptive robust control of a linear-motor-driven precision industrial gantry with improved cogging force compensation[J]. IEEE/ASME Transactions on Mechatronics, 2008, 13(6): 617-624. [125] Chen Zheng, Yao Bin, Wang Qingfeng.Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 1122-1129. [126] 王立俊, 赵吉文, 董菲, 等.基于自适应内模观测器的永磁同步直线电机高带宽强鲁棒预测电流控制策略研究[J].中国电机工程学报,2019,39(10):3098-3107. Wang Lijun, Zhao Jiwen, Dong Fei, et al.High-bandwidth and strong robust predictive current control strategy research forpermanent-magnet synchronous linear motor based on adaptive internal model observer[J]. Proceedings of the CSEE, 2019,39(10):3098-3107. [127] Yang Rui, Wang Mingyi, Li Liyi, et al.Integrated uncertainty/disturbance compensation with second-order sliding-mode observer for PMLSM-driven motion stage[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2597-2607. [128] Yang Rui, Li Liyi, Wang Mingyi, et al.Force ripple estimation and compensation of PMLSM with incremental extended state modeling-based Kalman filter: a practical tuning method[J]. IEEE Access, 2019, 7: 108331-108342. [129] 孟高军, 袁野, 张亮, 等. 基于谐波抑制和扰动观测器的磁通切换永磁直线电机联合控制方法[J]. 电工技术学报, 2018, 33(9): 1957-1966. MengGaojun, Yuan Ye, Zhang Liang, et al. A joint control method for linear flux-switching permanent magnetmachine based on harmonic suppression and disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1957-1966. [130] 孟高军, 余海涛, 黄磊, 等.基于x域重复控制的磁通切换永磁直线电机定位力抑制方法[J].中国电机工程学报,2015,35(16):4224-4231. MengGaojun, Yu Haitao, Huang Lei, et al. A cogging force reduction method for linear flux-switching permanent magnet machines based on the x-domain repetitive controller[J]. Transactions of China Electrotechnical Society, 2015,35(16):4224-4231. [131] Huang Wentao, Hua Wei, Yin Fangbo, et al.Model predictive thrust force control of a linear flux-switching permanent magnet machine with voltage vectors selection and synthesis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4956-4967. [132] 孔龙涛, 程明, 张邦富. 基于模型参考自适应系统的模块化磁通切换永磁直线电机无位置传感器控制[J]. 电工技术学报, 2016, 31(17): 132-139. Kong Longtao, Cheng Ming, Zhang Bangfu.Position sensorless control of modular linear flux-switching permanentmagnet machine based on model reference adaptive system[J]. Transactions of China Electrote-chnical Society, 2016, 31(17): 132-139. [133] Cao Ruiwu, Jiang Ning, Lu Minghang, et al.Sliding-mode observer based sensorless vector control of LFSPM motor for long-distance drive system[J]. IET Electric Power Applications, 2019, 13(5): 643-651. [134] Cao Ruiwu, Jiang Ning, Lu Minghang.Sensorless control of linear flux-switching permanent magnet motor based on extended Kalmanfilter[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5971-5979. [135] Zhao Wenxiang, Jiao Shuai, Chen Qian, et al.Sensorless control of a linear permanent-magnet motor based on an improved disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9291-9300. [136] Zhao Wenxiang, Yang Anchen, JiJinghua, et al. Modified flux linkage observer for sensorless direct thrust force control of linear vernier permanent magnet motor[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7800-7811. [137] JiJinghua, Jiang Yang, Zhao Wenxiang, et al. Sensorless control of linear vernier permanent-magnet motor based on improved mover flux observer[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3869-3877. [138] Zhao Wenxiang, Wu Binyu, Chen Qian, et al.Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernier permanent-magnet motor using improved SVPWM[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7458-7467. [139] Zhao Wenxiang, Chen Zhonghua, XuDezhi, et al. Unity power factor fault-tolerant control of linear permanent-magnet vernier motor fed by a floating bridge multilevel inverter with switch fault[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9113-9123. [140] Zhao Wenxiang, Zhao Peng, XuDezhi, et al. Hybrid modulation fault-tolerant control of open-end windings linear vernier permanent-magnet motor with floating capacitor inverter[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2563-2572.