电工技术学报  2020, Vol. 35 Issue (6): 1377-1386    DOI: 10.19595/j.cnki.1000-6753.tces.190020
高电压与绝缘 |
基于密度峰值聚类算法的局部放电脉冲分割
朱永利1, 蒋伟1, 刘刚1,2
1. 新能源电力系统国家重点实验室(华北电力大学) 保定 071003;
2. 贵州理工学院电气与信息工程学院 贵阳 550003
Partial Discharge Pulse Segmentation Based on Clustering by Fast Search and Find of Density Peaks
Zhu Yongli1, Jiang Wei1, Liu Gang1,2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power University Baoding 071003 China;
2. School of Electrical and Information Engineering Guizhou Institute of TechnologyGuiyang 550003 China
全文: PDF (82671 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 局部放电(PD)信号处理是电力设备绝缘状态评估的基础,而特征量提取又是信号处理的关键环节。特征量提取包括局部放电脉冲分割和放电特征量提取两个步骤。放电脉冲分割提取是后续PD信号特征提取及故障分类的前提。为尽可能保留放电信息,同时减少人工干涉,该文提出了一种基于聚类算法的PD脉冲分割提取方法。该方法采用小波分解算法进行滤波处理,使用噪声抑制比(NRR)表征滤波效果;以所有局部放电信号半波脉冲为对象,计算各半波脉冲的能量(即信号瞬时值平方对时间的积分),从而使该方法能更准确地描述局部放电过程。应用Otsu算法自适应计算能量阈值并结合密度峰值聚类算法(DPC)实现PD脉冲的自动分割。在实验室建立了三种不同类型局部放电模型,采集得到10组电晕放电、11组悬浮放电和30组锥板放电数据,以对该文方法进行验证。结果都取得了80%以上的识别率,比同类算法更高或相当,表明了该文方法的优越性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱永利
蒋伟
刘刚
关键词 局部放电最大类间方差法自适应能量阈值脉冲分割密度峰值聚类    
Abstract:Partial discharge (PD) signal processing is the basis of insulation state evaluation of electric power equipment, and feature extraction is the key link of signal processing. The feature extraction includes two steps: partial discharge pulse segmentation and discharge feature extraction. Pulse segmentation extraction is the premise of subsequent feature extraction and fault classification of PD signals. In order to preserve discharge information as much as possible and reduce manual interference, a PD pulse segmentation method based on clustering algorithm is proposed in this paper. The wavelet decomposition algorithm is used for filtering, and the noise rejection ratio (NRR) is used to characterize the filtering effect. The method takes all the partial discharge half-wave pulses into consideration to calculate the energy of each half-wave which is the integral of squared instant value of the PD signal over time. Therefore, it can describe the process of partial discharge more accurately. The Otsu algorithm is used to calculate the energy threshold adaptively, and one density peak clustering algorithm, called as clustering by fast search and find of density peaks (DPC), is used to achieve automatic segmentation of PD pulses. Three types of partial discharge models are established in the laboratory. Data from 10 sets of corona discharge, 11 sets of suspension discharge and 30 sets of cone-plate discharge are collected to verify the method. The results have achieved a recognition rate of more than 80%, which is higher or equivalent to the existing similar algorithms, demonstrating the superiority of this method.
Key wordsPartial discharge    Otsu adaptive energy threshold    adaptive energy threshold    pulse segment    clustering by fast search and find of density peaks (DPC)   
收稿日期: 2019-01-03      出版日期: 2020-03-27
PACS: TM85  
基金资助:国家自然科学基金重点项目(51677072)和中央高校基本科研业务费专项资金项目(2018QN078)资助
通讯作者: 朱永利 男,1963年生,教授,博士生导师,研究方向为网络化监控与智能信息处理、电力设备监测大数据处理。E-mail: yonglipw@163.com   
作者简介: 蒋 伟 男,1991年生,博士研究生,研究方向为输变电设备故障诊断。E-mail: paul_j@foxmail.com
引用本文:   
朱永利, 蒋伟, 刘刚. 基于密度峰值聚类算法的局部放电脉冲分割[J]. 电工技术学报, 2020, 35(6): 1377-1386. Zhu Yongli, Jiang Wei, Liu Gang. Partial Discharge Pulse Segmentation Based on Clustering by Fast Search and Find of Density Peaks. Transactions of China Electrotechnical Society, 2020, 35(6): 1377-1386.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.190020          https://dgjsxb.ces-transaction.com/CN/Y2020/V35/I6/1377