Affine Power Flow Algorithm for AC/DC Systems with Voltage Source Converter
Du Pingjing1, Yang Ming1, Cao Liangjing2, Zhai Hefeng3, Yang Jiajun1
1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan 250061 China; 2. State Grid Jibei Electric Power Company Limited Beijing 100053 China; 3. State Key Laboratory of HVDC of Electric Power Research Institute of China Southern Power Grid Guangzhou 510663 China
Abstract:In this paper, an affine arithmetic based AC/DC system power flow algorithm is proposed to provide a conservative estimation result when the injection power of the system is uncertain. The impacts of each uncertain variable on the system state variables can also be calculated. Firstly, the affine calculation method of the trigonometric function was proposed. And then the uncertain power flow model of the AC/DC system with voltage source converter (VSC) based on affine arithmetic was established. The VSC nodes were equivalent to different types of AC nodes and DC nodes respectively to correspond the solutions of AC and DC power flow models. Furthermore, the fast-decoupled method was used to solve the sequential AC/DC affine power flow. Finally, the effectiveness and rapidity of the proposed algorithm were verified by case studies. And the impacts of the uncertain variables on the system state variables of AC/DC systems were also be given.
杜萍静, 杨明, 曹良晶, 翟鹤峰, 杨佳峻. 含电压源换流器交直流系统的仿射潮流算法[J]. 电工技术学报, 2020, 35(5): 1106-1117.
Du Pingjing, Yang Ming, Cao Liangjing, Zhai Hefeng, Yang Jiajun. Affine Power Flow Algorithm for AC/DC Systems with Voltage Source Converter. Transactions of China Electrotechnical Society, 2020, 35(5): 1106-1117.
[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015. [2] 李兴源, 曾琦, 王渝红, 等. 柔性直流输电系统控制研究综述[J]. 高电压技术, 2016, 42(10): 3025-3037. Li Xingyuan, Zeng Qi, Wang Yuhong, et a1. Summary of research on flexible direct current transmission system control[J]. High Voltage Technology, 2016, 42(10): 3025-3037. [3] 杨仁炘, 施刚, 蔡旭. 海上全直流型风电场的电压源型控制[J]. 电工技术学报, 2018, 33(增刊2): 546-557. Yang Renxin, Shi Gang, Cai Xu.Voltage source control of offshore full DC wind farm[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 546-557. [4] 刘英培,杨小龙,梁海平,孙海新,赵玮.适用于混合多端直流输电系统的非线性下垂控制策略[J].电力系统自动化, 2018, 42(22):178-191. Liu Yingpei, Yang Xiaolong, Liang Haiping, et al.Nonlinear droop control strategy for hybrid multi-terminal DC systems[J]. Automation of Electric Power Systems, 2018, 42(22):178-191. [5] 孙玉树, 张国伟, 唐西胜, 等. 风电功率波动平抑下的MPC双储能控制策略研究[J].电工技术学报, 2019, 34(3): 571-578. Sun Yushu, Zhang Guowei, Tang Xisheng, et al.Research on MPC and daul energy storage control strategies with wind power fluctuation mitigation[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 571-578. [6] 曹佳, 严正, 李建华, 等. 含风电场交直流混联系统的概率潮流计算[J]. 电力自动化设备, 2016, 36(11): 94-101. Cao Jia, Yan Zheng, Li Jianhua, et al.Probabilistic power flow calculation for AC-DC hybrid system with wind farms[J]. Electric Power Automation Equipment, 2016, 36(11): 94-101. [7] Kumar S, Chaturvedi D K.Optimal power flow solution using fuzzy evolutionary and swarm optimization[J]. International Journal of Electrical Power & Energy Systems, 2013, 47(47): 416-423. [8] Adusumilli BS, Raj V, Boddeti K K.Modified affine arithmetic-based power flow analysis with uncertainty[J]. IET Generation Transmission & Distribution, 2018, 12(18): 4225-4232. [9] 韩亮. 计及间歇式电源不确定性的电力系统区间—仿射分析方法[D]. 天津: 天津大学, 2014. [10] Vaccaro A, Canizares C A, Villacci D.An affine arithmetic-based methodology for reliable power flow analysis in the presence of data uncertainty[J]. IEEE Transactions on Power Systems, 2010, 25(2): 624-632. [11] Wang Yang, Wu Zaijun, Dou Xiaobao, et al.Interval power flow analysis via multi-stage affine arithmetic for unbalanced distribution network[J]. Electric Power Systems Research, 2017, 142: 1-8. [12] 王守相, 韩亮. DG出力不确定性对配电网影响力分析的复仿射数学方法[J]. 中国电机工程学报, 2014, 34(31): 5507-5515. Wang Shouxiang, Han Liang.Complex affine arithmetic based method for the analyses of DG's uncertainty influence on distribution network[J]. Proceedings of the CSEE, 2014, 34(31): 5507-5515. [13] 韩亮, 王守相. 含光伏风电的基于仿射算法的配电三相潮流计算[J]. 电网技术, 2013, 37(12): 3413-3418. Han Liang, Wang Shouxiang.Affine algorithm-based calculation of three-phase power flow in a distribution network connected with PV generation and wind generation[J]. Power System Technology, 2013, 37(12): 3413-3418. [14] 丁涛, 崔翰韬, 顾伟, 等. 基于区间和仿射运算的不确定潮流算法[J]. 电力系统自动化, 2012, 36(13): 51-55, 115. Ding Tao, Cui Hantao, Gu Wei, et al.An uncertainty power flow algorithm based on interval and affine arithmetic[J]. Automation of Electric Power Systems, 2012, 36(13): 51-55, 115. [15] Mohamadreza B, Mehrdad G.A multi-option unified power flow approach for hybrid AC-DC grids incorporating multi-terminal VSC-HVDC[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2376-2383. [16] Chai Runze, Zhang Baohui, Dou Jingming, et al.Unified power flow algorithm based on the NR method for hybrid AC-DC grids incorporating VSCs[J]. IEEE Transactions on Power Systems, 2016, 31(6): 4310-4318. [17] 张潼,王毅,翟明玉,等.含电压源换流器的交直流混联电网状态估计快速解耦法[J].电力系统自动化, 2018, 42(21): 70-78. Zhang Tong, Wang Yi, Zhai Mingyu, et al.Fast decoupling method for state estimation of AC-DC hybrid grid with voltage source converter[J]. Automation of Electric Power Systems, 2018, 42(21): 70-78. [18] Wang W Y, Barnes M.Power flow algorithms for multi-terminal VSC-HVDC with droop control[J]. IEEE Transactions on Power Systems, 2014, 29(4): 1721-1730. [19] Beerten J, Cole S, Belmans R.Generalized steady-state VSC MTDC model for sequential AC-DC power flow algorithm[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829. [20] 陈厚合, 王长江, 姜涛, 等. 基于端口能量的含VSC-HVDC的交直流混合系统暂态稳定评估[J]. 电工技术学报, 2018, 33(3): 498-511. Chen Houhe, Wang Changjiang, Jiang Tao, et al.Transient stability assessment in hybrid AC-DC systems with VSC-HVDC via port energy[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 498-511. [21] Pirnia M, Cañizares C A, Bhattacharya K, et al.A novel affine arithmetic method to solve optimal power flow problems with uncertainties[J]. IEEE Transactions on Power Systems, 2014, 29(6): 2775-2783. [22] 何仰赞. 电力系统分析[M]. 武汉: 华中工学院出版社, 2002. [23] Stolfi J, Figueiredo L H D. Self-validated numerical methods and applications[J]. Am J Psychiatry, 1997, 112(9): 673-677. [24] 关维德, 黄守道, 黄小庆. 一种基于改进模块化多电平换流器的中压风电系统及其控制方法[J]. 电工技术学报, 2018, 33(16): 3782-3791. Guan Weide, Huang Shoudao, Huang Xiaoqing.A medium-voltage wind power system based on an improved modular multilevel converter and its control method[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3782-3791. [25] 吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250. Wu Jie, Wang Zhixin.Improved droop control strategy for multi-terminal flexible DC transmission systems[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 241-250. [26] Hong R.Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control[J]. CSEE Journal of Power & Energy Systems, 2015, 1(1): 9-18. [27] Ou K, Rao H, Cai Z, et al.MMC-HVDC simulation and testing based on the real-time digital simulator and physical control system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(4): 1109-1116.