Feedback Linearization Control of Hybrid Excitation Synchronous Motor
Li Shengmin1, 2, Zhang Zeling1, 2, Guo Siyu1, 2, Sun Xuxia1, 2, Zhao Dan1, 2
1. School of Automation and Information Engineering Xi’an University of Technology Xi’an 710048 China; 2. Key Laboratory of Shaanxi Province for Complex System Control and Intelligent Information Processing Xi’an 710048 China;
Abstract:Aiming at the nonlinear coupling problem between the currents and mechanical angular velocity of the hybrid excitation synchronous motor (HESM), the differential geometry theory of nonlinear system was used in this paper, based on the basic current control to achieve the output of low-speed large torque and wide speed regulation range. Through coordinate transformation and state feedback, the exact linearization decoupling conditions and decoupling matrix were deduced. And three linear subsystems that can be independently controlled-the d-axis current subsystem, the excitation current subsystem and the mechanical angular velocity subsystem were obtained. The dynamic decoupling control of the current loop in the global range of the HESM speed regulation system is realized. Through the comparison among exact linearization, partial linearization and traditional control simulation, the results show that the proposed control strategy has good speed tracking ability and strong robustness, and the dynamic and static performance of the system are improved.
[1] 肖湘宁, 李伟, 罗超, 等. 特高压直流孤岛运行特性与稳定控制研究综述[J]. 电工技术学报, 2017, 32(10): 1-11. Xiao Xiangning, Li Wei, Luo Chao, et al.Survey on operational characteristics and stability control of Ultra-HVDC transmission system in islanded mode[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 1-11. [2] 姚骏, 谭义, 裴金鑫, 等. 模块化多电平变流器高压直流输电系统直流故障改进控制策略[J]. 电工技术学报, 2018, 33(14): 3306-3318. Yao Jun, Tan Yi, Pei Jinxin, et al.Improved control strategy for DC fault in modular multi-level converter-HVDC system[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3306-3318. [3] 张刘春. ±1100kV特高压直流输电线路防雷保护[J].电工技术学报, 2018, 33(19): 4611-4617. Zhang Liuchun.Lightning protection of ±1100kV UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4611-4617. [4] 张静岚, 符瑜科, 卢铁兵, 等. 交直流复合电压下棒-板电极起晕电压实验分析[J]. 电工技术学报, 2017, 32(4): 180-188. Zhang Jinglan, Fu Yuke, Lu Tiebing, et al.Experi- mental analysis on corona inception voltage of rod-plane air gaps under DC and AC composite voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 180-188. [5] 中国电器工业协会. GB/T 1179—2008 圆线同心绞架空导线[S]. 北京: 中国标准出版社, 2009. [6] 中国电器工业协会. GB/T 20141—2006 型线同心绞架空导线[S]. 北京: 中国标准出版社, 2006. [7] 耿江海, 周松松, 岂小梅. 碳纤维复合芯导线与钢芯铝绞线的起晕特性对比试验[J]. 中国电力, 2015, 48(1): 76-80. Geng Jianghai, Zhou Songsong, Qi Xiaomei.Contrastive study on corona characteristics of aluminum conductor composite core and aluminum conductor steel reinforced[J]. Electric Power, 2015, 48(1): 76-80. [8] 张满, 李昶志, 张策茗, 等. 带电雨凇下瓦型及传统导线起始电晕电压对比[J]. 电气工程学报, 2017, 12(12): 18-25, 32. Zhang Man, Li Changzhi, Zhang Ceming, et al.Comparative analysis of corona onset voltage between T-type and ordinary conductor after energized glaze icing[J]. Journal of Electrical Engineering, 2017, 12(12): 18-25, 32. [9] 万建成, 李新民, 刘龙, 等. 型线与圆线的电晕和空气动力特性分析[J]. 中国电机工程学报, 2015, 35(增刊1): 241-248. Wan Jiancheng, Li Xinmin, Liu Long, et al.Corona and aerodynamic characteristics analysis on round line and profile line[J]. Proceedings of the CSEE, 2015, 35(S1): 241-248. [10] 孟晓波, 卞星明, 陈枫林, 等. 负直流下绞线电晕起始电压分析[J]. 高电压技术, 2011, 37(1): 77-84. Meng Xiaobo, Bian Xingming, Chen Fenglin, et al.Analysis on negative DC corona inception voltage of stranded conductors[J]. High Voltage Engineering, 2011, 37(1): 77-84. [11] 乔骥, 徐志威, 邹军, 等. 一种消除Deutsch假设的高精度迭代特征线方法求解高压直流输电线路离子流场[J]. 电工技术学报, 2018, 33(19): 4419-4425. Qiao Ji, Xu Zhiwei, Zou Jun, et al.A high-accuracy iterative method of characteristics without deutsch assumption for calculating ion-flow field of HVDC overhead lines[J]. Transactions of China Electro- technical Society, 2018, 33(19): 4419-4425. [12] Mailik N H.A review of the charge simulation method and its application[J]. IEEE Transactions on Electric Insulation, 1993, 24(1): 3-20. [13] 杨文翰, 吕英华. 用模拟电荷法求解高压输电线附近电磁场[J]. 电网技术, 2008, 32(2): 47-50. Yang Wenhan, Lü Yinghua.Application of emulation charge method in calculation of electromagnetic environment near to HV transmission lines[J]. Power System Technology, 2008, 32(2): 47-50. [14] 王珍雪, 马力, 叶会英, 等. 模拟DC输电线路中的优化及应用[J]. 高压电器, 2016, 52(1): 15-20, 26. Wang Zhenxue, Ma Li, Ye Huiying, et al.Optimi- zation and application of charge simulation method for UHVDC transmission lines[J]. High Voltage Apparatus, 2016, 52(1): 15-20, 26. [15] 乔骥, 邹军, 袁建生, 等. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 85-91. Qiao Ji, Zou Jun, Yuan Jiansheng, et al.A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 85-91. [16] 杨勇, 陆家榆, 鞠勇. 基于Deutsch假设法和有限元法的高压直流线路地面合成电场对比分析[J]. 电网技术, 2013, 37(2): 526-532. Yang Yong, Lu Jiayu, Ju Yong.Contrast and analysis on total electric field at ground level under HVDC transmission lines by Deutsch assumption-based method and finite element method[J]. Power System Technology, 2013, 37(2): 526-532. [17] 杨勇, 刘元庆, 吴桂芳, 等. 架空输电导线表面电场的计算方法和分布规律[J]. 高电压技术, 2015, 41(5): 1644-1650. Yang Yong, Liu Yuanqing, Wu Guifang, et al.Calculation method and distribution laws of electric field on surface of overhead transmission line[J]. High Voltage Engineering, 2015, 41(5): 1644-1650. [18] Andrews J G, Shrapnel A J.Electric-field distribution around an isolated stranded conductor[J]. Proceeding of the Institution of Electrical Engineers, 1972, 119(1): 1162-1166.