Abstract:Virtual vector control schemes for single-phase PWM converter can realize the reactive and active component of the grid current controlled independently. However, the orthogonal signals generators (OSG) methods may affect the dynamic response and harmonic performance, and rare papers have analyzed the connection between OSG methods and coupling term. An improved virtual vector control scheme is proposed in this paper, in which orthogonal signal generator (SOGI) is used to construct orthogonal signal, and the principle of the proposed control strategy is analyzed. Moreover, a unified equivalent model in stationary frame considering decoupling component is established to analyze the impact of decoupling approaches and the harmonic performance of OSG methods. Finally, both simulation and experimental results verify the correction and effectiveness of proposed methodology.
顾长彬, 王琛琛, 王堃, 王昕. 单相PWM整流器虚拟矢量控制策略[J]. 电工技术学报, 2019, 34(zk1): 202-211.
Gu Changbin, Wang Chenchen, Wang Kun, Wang Xin. Analysis on Virtual Vector Control Schemes for Single-Phase PWM Converter Based on Orthogonal Signals Generators. Transactions of China Electrotechnical Society, 2019, 34(zk1): 202-211.
[1] 庞圣钊, 皇甫宜耿, 郭亮, 等. 基于Lyapunov间接法分析的恒功率负载电源变换器宽稳定控制策略[J]. 电工技术学报, 2017, 32(14): 146-154. Pang Shengzhao, Huangfu Yigeng, Guo Liang, et al.A novel wide stability control strategy of constant power load power converter based on the analysis of Lyapunov indirect method[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 146-154. [2] 赵卓立, 杨苹, 郑立成, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122. Zhao Zhuoli, Yang Ping, Zheng Licheng, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122. [3] 韦礼军, 黄萌, 孙建军, 等. 带恒功率负载的光伏-储能混合发电系统非线性行为分析[J]. 电工技术学报, 2017, 32(7): 128-137. Wei Lijun, Huang Meng, Sun Jianjun, et al.Nonlinear analysis of photovoltaic battery hybrid power system with constant power loads[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(7): 128-137. [4] 黄良玉, 陆益民. 带恒功率负载DC-DC变换器的Lyapunov指数计算和动力学特性分析[J]. 电工技术学报, 2017, 32(11): 97-106. Huang Liangyu, Lu Yimin.Lyapunov exponent calculation and dynamics properties of DC-DC con- verter with constant power load[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 97-106. [5] 宫振杰, 王久和. 带恒功率负载的Buck-Boost变换器的稳定性研究[J]. 电气工程学报, 2017, 12(11): 1-6. Gong Zhenjie, Wang Jiuhe.Study on the stability of Buck-Boost converter with constant power load[J]. Journal of Electrical Engineering, 2017, 12(11): 1-6. [6] 韩民晓, 王皓界. 直流微电网——未来供用电领域的重要模式[J]. 电气工程学报, 2015, 10(5): 1-9. Han Minxiao, Wang Haojie.DC micro-grid—the important mode in the field of power supply and consumption[J]. Journal of Electrical Engineering, 2015, 10(5): 1-9. [7] 季宇, 王东旭, 吴红斌, 等. 提高直流微电网稳定性的有源阻尼方法[J]. 电工技术学报, 2017, 33(2): 370-379. Ji Yu, Wang Dongxu, Wu Hongbin, et al.The active damping method for improving the stability of DC microgrid[J]. Transactions of China Electrotechnical Society, 2017, 33(2): 370-379. [8] 熊远生, 俞丽, 徐建明. 光伏发电系统多模式接入直流微电网及控制方法[J]. 电力系统保护与控制, 2015, 43(12): 37-43. Xiong Yuansheng, Yu Li, Xu Jianming.Multimode of photovoltaic generation system connected to DC microgrid and control methods[J]. Power System Protection and Control, 2015, 43(12): 37-43. [9] 王晓兰, 李晓晓. 孤岛模式下风电直流微电网小信号稳定性分析[J]. 电力自动化设备, 2017, 37(5): 92-99. Wang Xiaolan, Li Xiaoxiao.Small-signal stability analysis of islanded DC microgrid with wind power[J]. Electric Power Automation Equipment, 2017, 37(5): 92-99. [10] 王瑞琪, 程艳, 孙树敏, 等. 基于坐标旋转虚拟阻抗的微电网控制与性能分析[J]. 电力系统保护与控制, 2014, 42(12): 78-86. Wang Ruiqi, Cheng Yan, Sun Shumin, et al.Control and performance analysis of microgrid based on coordinate rotational virtual impedance[J]. Power System Protection and Control, 2014, 42(12): 78-86. [11] Wen Bo, Boroyevich D, Burgos R, et al.Small-signal stability analysis of three-phase AC systems in the presence of constant power loads based on measured d-q frame impedances[J]. IEEE Power Electronics Society, 2015, 30(10): 5952-5963. [12] Middlebrook R D.Input filter consideration in design and application of switching regulators[C]//IEEE Industry Applications Society Annual Meeting, Chicago, Lllionis, 1976: 366-382. [13] Wildrick C M, Lee F C, Cho B H, et al.A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics, 1995, 10(3): 280-285. [14] Marx D, Magne P, Nahid-Mobarakeh B, et al.Large signal stability analysis tools in dc power systems with constant power loads and variable power loads—a review[J]. IEEE Transactions on Power Electron, 2012, 27(4): 1773-1787. [15] Teng Long, Wang Youyi, Cai Wenjian, et al.Robust fuzzy model predictive control of discrete-time Takagi-Sugeno systems with nonlinear local models[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2915-2925. [16] Kim H J, Kang S W, Seo G S, et al.Large-signal stability analysis of DC power system with shunt active damper[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6270-6280. [17] Brayton R K, Moser J K.A theory of nonlinear networks-I[J]. Quarterly of Applied Mathematics, 1964, 22: 1-33.