电工技术学报  2019, Vol. 34 Issue (16): 3453-3463    DOI: 10.19595/j.cnki.1000-6753.tces.180900
电力系统 |
基于双分辨率S变换和学习向量量化神经网络的电能质量扰动检测方法
李建闽1, 林海军1, 梁成斌2, 滕召胜2, 成达3
1. 湖南师范大学工程与设计学院 长沙 410081;
2. 湖南大学电气与信息工程学院 长沙 410082;
3. 中国电力科学研究院 北京 100192
Detection Method of Power Quality Disturbances Based on Double Resolution S Transform and Learning Vector Quantization Neural Network
Li Jianmin1, Lin Haijun1, Liang Chengbin2, Teng Zhaosheng2, Cheng Da3
1. College of Engineering and Design Hunan Normal University Changsha 410081 China;
2. College of Electrical and Information Engineering Hunan University Changsha 410082 China;
3. China Electric Power Research Institute Beijing 100192 China
全文: PDF (59987 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着实际电网中非线性负荷以及冲击性负荷的不断增加,电能质量问题日趋严重。实现电能质量扰动信号的准确、快速检测对于查找电能质量问题根源、改善电能质量、确保电网安全、保障经济稳定具有重大意义。为此,提出一种基于双分辨率S变换和学习向量量化(LVQ)神经网络的电能质量扰动信号检测方法。算法先采用双分辨率S变换实现扰动信号特征向量的准确、快速提取。在获得扰动信号的特征向量后对各特征向量进行归一化处理并利用经过训练的LVQ神经网络对扰动信号进行分类识别。仿真和实际测试结果表明,该文提出的基于双分辨率S变换和LVQ神经网络的电能质量扰动检测算法具有训练速度快、分类准确率高、适合嵌入式实现等优点。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建闽
林海军
梁成斌
滕召胜
成达
关键词 电能质量扰动分类S变换学习向量量化神经网络时频分析    
Abstract:As the nonlinear loads and impact loads in power grid increase, the power quality problems are becoming more and more serious. Accurate and fast detection of power quality disturbance signals has great significance for finding the cause of power quality problems and improving the power quality. Therefore, an algorithm for recognizing power quality disturbance signals is proposed in this paper based on double resolution S-transform and learning vector quantization (LVQ) neural network. Firstly, double resolution S-transform is used to extract the feature vectors of disturbance signals accurately and quickly. Then, the obtained feature vectors of disturbance signals are normalized and the trained LVQ neural network is used to classify and identify the disturbance signals. The simulation and actual test results show that the proposed algorithm based on double resolution S-transform and LVQ neural network has fast training speed, high classification accuracy and is suitable for embedded implementation.
Key wordsPower quality    disturbance classification    S transform    learning vector quantization (LVQ) neural network    time-frequency analysis   
收稿日期: 2018-05-28      出版日期: 2019-09-02
PACS: TM935  
基金资助:国家自然科学基金资助项目(5137049,51775185)
通讯作者: 滕召胜 男,1963年生,教授,博士生导师,研究方向为电气测量技术及智能信息处理技术。E-mail: tengzs@126.com   
作者简介: 李建闽 男,1985年生,博士,讲师,研究方向为电能质量分析与检测、信息融合与智能信息处理。E-mail: ljmdzyx@163.com
引用本文:   
李建闽, 林海军, 梁成斌, 滕召胜, 成达. 基于双分辨率S变换和学习向量量化神经网络的电能质量扰动检测方法[J]. 电工技术学报, 2019, 34(16): 3453-3463. Li Jianmin, Lin Haijun, Liang Chengbin, Teng Zhaosheng, Cheng Da. Detection Method of Power Quality Disturbances Based on Double Resolution S Transform and Learning Vector Quantization Neural Network. Transactions of China Electrotechnical Society, 2019, 34(16): 3453-3463.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.180900          https://dgjsxb.ces-transaction.com/CN/Y2019/V34/I16/3453