Abstract:The resonant frequency of resonant wireless power transmission is high and the power electric device is difficult to achieve high-frequency high-power switching converters at present. Accordingly, a method for reducing the resonant frequency of resonant wireless power transmission was proposed based on fractional-order principle. The circuit model of series-series fractional-order wireless power transmission system was then established, and the output power and transmission efficiency were deduced. The influence of the fractional order on the parameters and characteristics of resonant wireless power transmission was analyzed by Matlab simulation. The results show that the fractional-order inductance and capacitance components can greatly reduce the resonant frequency of resonant wireless power transmission and the switching frequency of the switching device, and can also output more power than the integer order wireless power transmission system.
疏许健, 张波. 降低整数阶无线电能传输谐振频率的分数阶方法[J]. 电工技术学报, 2017, 32(18): 83-89.
Shu Xujian, Zhang Bo. A Fractional-Order Method to Reduce the Resonant Frequency of Integer-Order Wireless Power Transmission System. Transactions of China Electrotechnical Society, 2017, 32(18): 83-89.
[1] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [2] 李阳, 张雅希, 杨庆新, 等. 磁耦合谐振式无线电能传输系统最大功率效率点分析与实验验证[J]. 电工技术学报, 2016, 31(2): 18-24. Li Yang, Zhang Yaxi, Yang Qingxin, et al. Analysis and experimental validation on maximum power and efficiency in wireless power transfer system via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 18-24. [3] Imura T, Okabe H, Hori Y. Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant coupling[C]//Proceedings of IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, USA, 2009: 936-940. [4] Beh T, Kato M, Imura T, et al. Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling[J]. IEEE Transa- ctions on Industrial Electronics, 2013, 60(9): 3689- 3698. [5] 翟渊, 孙跃, 戴欣, 等. 磁共振模式无线电能传输系统建模与分析[J]. 中国电机工程学报, 2012, 32(12): 155-160. Zhai Yuan, Sun Yue, Dai Xin, et al. Modeling and analysis of magnetic resonance wireless power transmission systems[J]. Proceeding of the CSEE, 2012, 32(12): 155-160. [6] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报, 2012, 32(21): 153-158. Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Modeling and design and experimental verification of contactless power transmission systems via elec- tromagnetic resonant coupling[J]. Proceeding of the CSEE, 2012, 32(21): 153-158. [7] 张波, 黄润鸿, 丘东元. 磁谐振中距离无线电能传输及关键科学问题[J]. 电源学报, 2015, 13(4): 1-7. Zhang Bo, Huang Runhong, Qiu Dongyuan. Key problems of midrange wireless power transfer via magnetic resonances[J]. Journal of Power Supply, 2015, 13(4): 1-7. [8] 黄学良, 曹伟杰, 周亚龙, 等. 磁耦合谐振系统中的两种模型对比探究[J]. 电工技术学报, 2013, 28(增刊2): 13-17. Huang Xueliang, Cao Weijie, Zhou Yalong, et al. Comparative study on the two kinds of models in the technology of magnetic coupling resonance system[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 13-17. [9] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al. Key fundmental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [10] 李阳, 朱春波, 宋凯, 等. 弱耦合无线电能传输系统驱动源研究[J]. 电工技术学报, 2015, 30(增刊1): 193-198. Li Yang, Zhu Chunbo, Song Kai, et al. Research on the driving source of wireless power transfer system with weekly coupled condition[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 193- 198. [11] Oldham K B, Spanier J. The fractional calculus: Integrations and differentiations of arbitrary order[M]. New York: Academic Press, 1974. [12] Radwan A G, Salama K N. Fractional-order RC and RL circuits[J]. Circuit & Systems & Signal Pro- cessing, 2012, 31(6): 1901-1915. [13] Radwan A G. Resonance and quality factor of the fractional circuit[J]. IEEE Journal on Emerging and Selected Topics in Circuit and Systems, 2013, 3(3): 377-385. [14] Soltan A, Radwan A G, Soliman A M. Fractional- order mutual inductance: analysis and design[J]. International Journal of Circuit & Applications, 2016, 44(1): 85-97.