Temperature Compensation of Maglev Train Gap Sensor Based on RBF Neural Network and LS-SVM Combined Model
Jing Yongzhi1,2, He Fei1,2, Zhang Kunlun1,2
1.Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle Ministry of Education Chengdu 610031 China 2.School of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China
Abstract:The temperature drift mechanism of the maglev train gap sensor is analyzed and a method is proposed to solve the temperature drift problem.In this method,the combined model of the temperature inverse characteristic is designed to compensate the temperature drift error.The radial basis function neural network (RBF-NN) and the least squares support vector machine (LS-SVM) combined temperature compensation model is established with the temperature characteristic of the gap sensor.A PT1000 temperature sensor is embedded in the probe in order to provide the reference temperature.The combined model compensates the temperature drift error of the gap senor according to the temperature signal.The simulation results show that the inverse temperature characteristic can be fitted well by the combined model.The output of the compensator is independent of the tooth-groove position.The simulation studies show that this compensator can provide correct gap data with the error less than 0.14 mm in the full scale and less than 0.05 mm in the normal work gap.The precision of the combined model is better than that of any single model.The precision of the sensor is increased with this method and the compensated output of the gap sensor may meet the requirement of levitation control system.
靖永志, 何飞, 张昆仑. 基于RBF神经网络和LS-SVM组合模型的磁浮车间隙传感器温度补偿[J]. 电工技术学报, 2016, 31(15): 73-80.
Jing Yongzhi, He Fei, Zhang Kunlun. Temperature Compensation of Maglev Train Gap Sensor Based on RBF Neural Network and LS-SVM Combined Model. Transactions of China Electrotechnical Society, 2016, 31(15): 73-80.
[1] 严陆光.关于积极发展我国磁浮交通的建议[J].电工电能新技术,2005,24(1):1-7. Yan Luguang.Suggestion for actively developing maglev transportation system in China[J].Advanced Technology of Electrical Engineering and Energy,2005,24(1):1-7. [2] 吕梁,樊树江,吴峻.电涡流间隙传感器的温度补偿[J].传感器与微系统,2006,25(5):37-38. Lu Liang,Fan Shujiang,Wu Jun.Temperature compensation of eddy current sensor[J].Transducer and Microsystem Technologies,2006,25(5):37-38. [3] 李璐,吴峻,周文武.高速磁浮列车间隙传感器温度漂移的补偿[J].传感技术学报,2008,21(1):70-73. Li Lu,Wu Jun,Zhou Wenwu.Temperature drift compensation for gap ensor of high speed maglev train[J].Chinese Journal of Sensors and Actuators,2008,21(1):70-73. [4] 邹东升,佘龙华,张志洲,等.容许间隙传感器温漂的磁浮系统控制律重构[J].计算机仿真,2010,27(2):278-281. Zou Dongsheng,She Longhua,Zhang Zhizhou,et al.Maglev control law reconfiguration against gap sensor temperature drift[J].Computer Simulation,2010,27(2):278-281. [5] Jing Yongzhi,Xiao Jian.Compensation of gap sensor for high-speed maglev train with RBF neural network[J].Transactions of the Institute of Measurement and Control,2013,35(7):933-939. [6] 陈伟根,滕黎,刘军,等.基于遗传优化支持向量机的变压器绕组热点温度预测模型[J].电工技术学报,2014,29(1):44-51. Chen Weigen,Teng Li,Liu Jun,et al.Transformer winding hot-spot temperature prediction model of support vector machine optimized by genetic algorithm[J].Transactions of China Electrotechnical Society,2014,29(1):44-51. [7] 张翌晖,王贺,胡志坚,等.基于集合经验模态分解和改进极限学习机的短期风速组合预测研究[J].电力系统保护与控制,2014,42(10):29-34. Zhang Yihui,Wang He,Hu Zhijian,et al.A hybrid short-term wind speed forecasting model based on ensemble empirical mode decomposition and improved extreme learning machine[J].Power System Protection and Control,2014,42(10):29-34. [8] 孙伟,常虹,赵巧芝.基于量子和声优化的改进DMSFE组合模型及在中长期电量预测中的应用[J].电力系统保护与控制,2014,42(21):66-73. Sun Wei,Chang Hong,Zhao Qiaozhi.Forecasting mid-long term electricity consumption using a quantum harmony search based improved DMSFE combination model[J].Power System Protection and Control,2014,42(21):66-73. [9] 唐祥玲,王平,李思岑,等.基于方差-协方差组合预测的中长期电力负荷预测研究[J].电气技术,2015,16(1):15-18. Tang Xiangling,Wang Ping,Li Sicen,et al.Research on medium and long-term electric load forecasting based on variance-covariance combined model[J].Electrical Engineering,2015,16(1):15-18. [10]何伟铭,宋小奇,甘屹,等.传感器校正的优化灰色神经网络建模方法研究[J].仪器仪表学报,2014,35(3):504-512. He Weiming,Song Xiaoqi,Gan Qi,et al.Research on optimized grey neural network modeling method for sensor calibration[J].Chinese Journal of Scientific Instrument,2014,35(3):504-512. [11]Meng Ke,Dong Zhaoyang,Wang Dianhui,et al.A self-adaptive RBF neural network classifier for transformer fault analysis[J].IEEE Transactions on Power Systems,2010,25(3):1350-1360. [12]马立,徐次雄,欧阳航空,等.基于动量BP神经网络激光陀螺调腔检测方法[J].中国激光,2012,39(4):37-44. Ma Li,Xu Cixiong,Ouyang Hangkong,et al.Detection method of laser gyroscope cavity adjustment based on momentum BP neural network[J].Chinese Journal of Lasers,2012,39(4):37-44. [13]Hacib T,Le B Y,Mekideche M R,et al.Microwave characterization using least-square support vector machines[J].IEEE Transactions on Magnetics,2010,46(8):2811-2814. [14]王贺,胡志坚,仉梦林.基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测模型[J].电工技术学报,2014,29(12):218-224. Wang He,Hu Zhijian,Zhang Menglin.A combined forecasting model for range of wind power fluctuation based on fuzzy information granulation and least squares support[J].Transactions of China Electrotechnical Society,2014,29(12):218-224. [15]王恺,关少卿,汪令祥,等.基于模糊信息粒化和最小二乘支持向量机的风电功率联合预测建模[J].电力系统保护与控制,2015,43(2):26-32. Wang Kai,Guan Shaoqing,Wang Lingxiang,et al.A combined forecasting model for wind power predication based on fuzzy information granulation and least squares support vector machine[J].Power System Protection and Control,2015,43(2):26-32.