Abstract:This paper mainly investigates temperature field modeling of high power-density in-wheel motor. Theoretical analysis of thermal circuit model presents the influencing factors for prediction accuracy of temperature field. A new accurate temperature field simulation method based on loading the heat source according to loss distribution is improved. Iron-loss distribution of the permanent magnet motor is given by analyzing iron loss with orthogonal Fourier decomposition method. Based on the analysis of thermal circuit model and the comparison with traditional simulation method, this paper points this method is imperative for in-wheel motor at the condition of high speed running.
梁培鑫,裴宇龙,甘磊,柴凤. 高功率密度轮毂电机温度场建模研究[J]. 电工技术学报, 2015, 30(14): 170-176.
Liang Peixin,Pei Yulong,Gan Lei,Chai Feng*. Research of Temperature Field Modeling for High Power-density In-wheel Motor. Transactions of China Electrotechnical Society, 2015, 30(14): 170-176.
[1] Yutao Luo, Di Tan. Study on the Dynamics of the In-wheel Motor System[J]. IEEE Transactions on Vehicular Technology, 2012(99): 1-10. [2] C. Versèle, O. Deblecker, Z. De Grève, J. Lobry. Multiobjective Optimal Design of a Voltage Supply Inverter Fed In-Wheel Synchronous Motor[C]. Conference of VPPC, 2010: 1-6. [3] Liu C., Lee C. H. T. et al. Comparison of outer-rotor permanent magnet machines for in-wheel drives[C]. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), 2013: 1-6. [4] Kim S. C., Kim W., Kim M. S. Cooling performance of 25 kW in-wheel motor for electric vehicles[J]. International Journal of Automotive Technology, 2013, 14(4): 559-567. [5] Lim D. H., Lee M.-Y., Lee H.-S., et al. Performance evaluation of an in-wheel motor cooling system in an electric vehicle/hybrid electric vehicle[J]. Energies, 2014, 7(2): 961-971. [6] Jae-Han S., S. H. C., et al. Tem- perature prediction of oil-cooled IPMSM for in-wheel direct-drive through lumped parameter thermal model [C]. Proceedings of the Electrical Machines and Systems, 2013 International Conference on, 2013: 1-5. [7] YULEI L. Calculation and Analysis of 3D Tem- perature Field in Steady State of the Submersible Motor[C]. Proceedings of the 2010 International Conference on Electrical and Control Engineering, 2010, 3427-3430. [8] YUJIAO Z, JIANGJUN R, TAO H, et al. Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid- dynamical and thermal finite-element analysis[J]. IEEE Transac- tions on Magnetics, 2012, 48(2): 1047-1050. [9] 张琪, 鲁茜睿, 黄苏融. 多领域协同仿真的高密度永磁电机温升计算[J]. 中国电机工程学报, 2014, 34(12): 1874-1881. ZHANG Qi, LU Xirui, HUANG Surong, ZHANG Jun. Temperature Rise Calculations of High Density Permanent Magnet Motors Based on Multi-domain Co-simulation[J]. Proceedings of the CSEE, 2014, 34(12): 1874-1881. [10] WEILI L, XIAOCHEN Z, SHUKANG C, et al. Thermal optimization for a HSPMG used for distributed generation systems[J]. IEEE Transactions on Industrial Electronics. 2013, 60(2): 474-482. [11] JIANNING D., et al. Thermal optimization of a high-speed permanent magnet motor[J]. IEEE Transactions on Magnetics, 2014, 50(2): 749-752. [12] 邰永, 刘赵淼. 感应电机全域三维瞬态温度场分析[J]. 中国电机工程学报, 2010, 30(30): 114-120. TAI Yong, LIU Zhaomiao. Analysis on Three-dimensional Transient Temperature Field of Induction Motor[J]. Proceedings of the CSEE, 2010, 30(30): 114-120. [13] 胡田, 唐任远. 永磁风力发电机三维温度场计算及分析[J]. 电工技术学报, 2013, 28(3): 122- 126. Hu Tian, Tang Renyuan, et al. Thermal Analysis and Calculation of Permanent Magnet Wind Generators[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 122-126. [14] 余莉, 胡虔生等. 高速永磁无刷直流电机铁耗的分析和计算[J].电机控制与应用, 2007, 34(4): 10-14. YU Li, HU Qiansheng, et al. Analysis and Calculation of the Iron Losses of High Speed Permanent Motors[J]. Motor and Control Application, 2007, 34(4): 10-14. [15] 张洪亮, 邹继斌, 陈霞, 江善林. PMSM定子铁耗与磁极涡流损耗计算及其对温度场的影响[J]. 微特电机, 2008(5): 1-4. ZHANG Hongliang, ZOU Jibin, et al. The Calculation of Stater Iron Losses and Magnet Pole Eddy-Current Loss for PMSM and Influence on Temperature Field Distribution[J]. Small and Special Electrical Machines, 2008(5): 1-4.