Phase shifting transformers are power flow control devices that regulate power flow distribution by adjusting the phase angle between voltage and current on either side of their insertion point in a line. Phase shifting transformers can be classified as either two core or single core based on the number of cores, and as symmetrical or asymmetrical based on their operating principle. This paper focuses on the commonly used symmetrical two core Phase shifting transformer as a case study.
The symmetrical two core Phase shifting transformer (referred to as “Phase shifting transformer”) consists of a series transformer and an excitation transformer. Conventional main protection schemes for these transformers employ multiple differential relays, requiring numerous current transformers (CTs) and complex interconnections. To address this challenge, this paper proposes a novel Phase shifting transformer main protection scheme based on a streamlined CT configuration, building upon an analysis of the electromagnetic coupling within the Phase shifting transformer’s various components.
The proposed scheme involves placing CTs at the three-phase input and output terminals of the Phase shifting transformer to obtain the necessary current information. A CT is also placed on the secondary side of one phase of the series transformer to obtain its secondary current. Furthermore, the secondary currents of the other two phases of the series transformer can be calculated based on the delta connection of its secondary windings. Using these measured and calculated currents, the proposed streamlined protection scheme is formed, consisting of one magnetic balance differential protection element (KCD) and three comprehensive differential protection elements (KZD1 ~ KZD3). The magnetic balance differential protection (KCD) utilizes the CT on the secondary side of one series transformer phase, along with the corresponding phase’s input and output CTs. This protection element, based on the ampere-turn balance principle between the transformer’s primary and secondary windings, detects internal faults within that series transformer; KZD1 and KZD2 use the series transformer secondary CT along with the input and output CTs of the other two phases, while KZD3 uses the input and output CTs of all three phases. The underlying principle of the comprehensive differential protections (KZD1 ~ KZD3) is the integration of electrical balance differential protection and magnetic balance differential protection. This is achieved by combining the ampere-turn balance equations for the transformer windings with the Kirchhoff’s Current Law (KCL) equations for the “T” connection. This allows a single differential relay to detect multiple fault types.
Furthermore, In the proposed novel main protection scheme, the four differential relays have different and overlapping protection zones. By analyzing the operational combinations of these relays, the fault discrimination range can be narrowed. Moreover, the mal operation of the comprehensive differential protection during the no-load switching-in of the Phase shifting transformer can be prevented by second harmonic block of magnetizing inrush current. Finally, a simulation model was developed on the PSCAD/EMTDC platform, and the operation of each differential relay was simulated and analyzed under various fault locations, fault phases, and fault severities. The feasibility and effectiveness of the proposed scheme are verified through extensive simulation experiments.
[1] 国家能源局.我国风电光伏发电装机规模超过煤电[EB/OL]. (2024-08-02). https://www.nea.gov.cn/2024-08/02/c_1310783697.htm.
[2] 王增平, 林一峰, 王彤, 等. 电力系统继电保护与安全控制面临的挑战与应对措施[J]. 电力系统保护与控制, 2023, 51(6): 10-20.
Wang Zengping, Lin Yifeng, Wang Tong, et al.Challenges and countermeasures to power system relay protection and safety control[J]. Power System Protection and Control, 2023, 51(6): 10-20.
[3] 武平, 郭巍, 晋春杰, 等. 浅谈我国电力与能源现状及解决途径[J]. 电气技术, 2018, 19(5): 1-4, 14.
Wu Ping, Guo Wei, Jin Chunjie, et al.Analysis on the current situation of electricity and energy in China and its solution[J]. Electrical Engineering, 2018, 19(5): 1-4, 14.
[4] 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506.
Chen Guoping, Dong Yu, Liang Zhifeng.Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506.
[5] 林超凡, 别朝红. 新型电力系统不确定性静态建模及量化分析方法评述[J]. 电力系统自动化, 2024, 48(19): 14-27.
Lin Chaofan, Bie Zhaohong.Review of static modeling and quantitative analysis methods for uncertainties of new power systems[J]. Automation of Electric Power Systems, 2024, 48(19): 14-27.
[6] Wu Xi, Wang Rui, Wang Yifei, et al.A novel UPFC model and its convexification for security-constrained economic dispatch[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4202-4213.
[7] 杨用春, 杜翔宇, 杨鹏, 等. 混合潮流控制器阻抗特性分析及控制策略研究[J]. 电工技术学报, 2024, 39(21): 6720-6733.
Yang Yongchun, Du Xiangyu, Yang Peng, et al.Analysis of impedance characteristics and control strategy of hybrid power flow controller[J]. Transactions of China Electrotechnical Society, 2024, 39(21): 6720-6733.
[8] 于继来, 柳焯. 基于移相器统一特性的潮流控制[J]. 中国电机工程学报, 1994, 14(6): 1-5, 10.
Yu Jilai, Liu Zhuo.The common character of phase shifter based power flow control[J]. Proceedings of the CSEE, 1994, 14(6): 1-5, 10.
[9] 李东, 丁剑, 王正风, 等. 移相变压器的研究现状及工程应用[J]. 智能电网, 2015, 3(7): 608-616.
Li Dong, Ding Jian, Wang Zhengfeng, et al.Research status and engineering application of phase shifting transformer[J]. Smart Grid, 2015, 3(7): 608-616.
[10] Patel B K, Smith H S, Hewes T S, et al. Application of phase shifting transformers for Daniel-McKnight 500 kV interconnection[J]. IEEE Power Engineering Review, 1986, PER-6(7): 49-50.
[11] Thallam R S, Lundquist T G, Gerlach T W, et al.Design studies for the Mead-Phoenix 500 kV AC transmission project[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1862-1874.
[12] 国网江苏省电力有限公司.我国首个输电移相器示范工程在扬州投运[EB/OL].(2023-07-28).http://www.js.sgcc.cn/html/main/col8/2023-08/03/20230803090654619606074_1.html.
[13] 李晓华, 陈镇生, 罗一杰, 等. 基于全绕组拓扑结构的移相变压器建模及应用[J]. 电力自动化设备, 2022, 42(12): 101-106.
Li Xiaohua, Chen Zhensheng, Luo Yijie, et al.Modeling and application of phase-shifting transformer based on full winding topology structure[J]. Electric Power Automation Equipment, 2022, 42(12): 101-106.
[14] 陈柏超, 曾永胜, 刘俊博, 等. 基于Sen Transformer的新型统一潮流控制器的仿真与实验[J]. 电工技术学报, 2012, 27(3): 233-238.
Chen Baichao, Zeng Yongsheng, Liu Junbo, et al.Simulation and experimental research of a novel unified power flow controller based on Sen transformer[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 233-238.
[15] 贾焦心, 李豪迈, 邵晨, 等. 新型电磁式混合潮流控制器拓扑及控制策略[J/OL]. 电工技术学报, 2024: 1-16. (2024-12-26). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241539.
Jia Jiaoxin, Li Haomai, Shao Chen, et al. Topology and control strategy of new electromagnetic hybrid power flow controller[J/OL]. Transactions of China Electrotechnical Society, 2024: 1-16. (2024-12-26). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241539.
[16] 杨用春, 杜翔宇, 唐健雄, 等. 基于改进移相变压器的综合调压合环装置及调控策略[J]. 电工技术学报, 2025, 40(8): 2532-2546.
Yang Yongchun, Du Xiangyu, Tang Jianxiong, et al.Research on comprehensive voltage regulating and closing ring device and regulation strategy based on improved PST[J]. Transactions of China Electrotechnical Society, 2025, 40(8): 2532-2546.
[17] 余梦泽, 李俭, 刘雷, 等. 电磁混合式统一潮流控制器的拓扑结构与控制策略优化[J]. 电工技术学报, 2015, 30(增刊2): 169-175.
Yu Mengze, Li Jian, Liu Lei, et al.Topology structure and control strategy optimization of electromagnetic hybrid unified power flow controller[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 169-175.
[18] 颜湘武, 郭燕, 彭维锋, 等. 基于旋转移相变压器的电压源型无功补偿器及其控制策略[J]. 电工技术学报, 2023, 38(16): 4448-4464.
Yan Xiangwu, Guo Yan, Peng Weifeng, et al.Voltage source var compensator based on rotary phase shifting transformer and its control strategy[J]. Transactions of China Electrotechnical Society, 2023, 38(16): 4448-4464.
[19] 邵晨, 颜湘武, 贾焦心, 等. 面向“花瓣型” 配电网的旋转潮流控制器两阶段转速功率控制策略[J]. 电工技术学报, 2025, 40(1): 52-63.
Shao Chen, Yan Xiangwu, Jia Jiaoxin, et al.Two-stage speed-power control strategy for rotating power flow controller in “petal-shaped” distribution networks[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 52-63.
[20] 陈镇生, 李晓华, 罗一杰, 等. 针对含有移相变压器线路的距离保护策略[J]. 电网技术, 2022, 46(12): 4591-4599.
Chen Zhensheng, Li Xiaohua, Luo Yijie, et al.Distance protection strategies for lines containing phase shifting transformers[J]. Power System Technology, 2022, 46(12): 4591-4599.
[21] 冯喜春, 张骥, 于佳旭, 等. 移相变压器接入对距离保护影响及其抑制方案研究[J]. 电网技术, 2025, 49(5): 2167-2175.
Feng Xichun, Zhang Ji, Yu Jiaxu, et al.Research on the impact and suppression scheme of distance protection after phase shifting transformer connected[J]. Power System Technology, 2025, 49(5): 2167-2175.
[22] Tziouvaras D A.138 kV phase shifting transformer protection: EMTP modeling and model power system testing[C]//Eighth IEE International Conference on Developments in Power System Protection, Amsterdam, Netherlands, 2004: 343-347.
[23] 张晓宇, 顾乔根, 文继锋, 等. 典型移相变压器差动保护配置对比分析[J]. 江苏电机工程, 2015, 34(1): 36-39.
Zhang Xiaoyu, Gu Qiaogen, Wen Jifeng, et al.Comparative analysis of the differential protection between typical phase shifting transformers[J]. Jiangsu Electrical Engineering, 2015, 34(1): 36-39.
[24] Khan U N, Sidhu T S.A phase-shifting transformer protection technique based on directional comparison approach[J]. IEEE Transactions on Power Delivery, 2014, 29(5): 2315-2323.
[25] 郑涛, 申由, 于佳旭, 等. 基于单芯移相变压器的差动保护配置研究[J]. 电力系统保护与控制, 2024, 52(14): 59-70.
Zheng Tao, Shen You, Yu Jiaxu, et al.Differential protection configuration based on a single core phase shifting transformer[J]. Power System Protection and Control, 2024, 52(14): 59-70.
[26] 谢舒帆, 荣娜, 郭西. 基于序故障分量的Sen变压器纵联保护研究[J]. 电网与清洁能源, 2023, 39(5): 56-65.
Xie Shufan, Rong Na, Guo Xi.Pilot protection for Sen transformer based on sequence fault components[J]. Power System and Clean Energy, 2023, 39(5): 56-65.
[27] 郑涛, 于佳旭, 眭程曦, 等. 基于磁路耦合的Sen变压器差动保护方案[J]. 中国电力, 2025, 58(3): 108-118.
Zheng Tao, Yu Jiaxu, Sui Chengxi, et al.Sen transformer differential protection scheme based on magnetic circuit coupling[J]. Electric Power, 2025, 58(3): 108-118.
[28] 余梦泽, 李峰, 李作红, 等. 移相变压器原理、拓扑、应用及发展[J]. 武汉大学学报(工学版), 2023, 56(10): 1224-1237.
Yu Mengze, Li Feng, Li Zuohong, et al.Principle, topology, application and development of phase-shifting transformer[J]. Engineering Journal of Wuhan University, 2023, 56(10): 1224-1237.
[29] 郑涛, 王增平, 翁汉琍, 等.超/特高压变压器差动保护关键技术与新原理[M]. 北京: 科学出版社 2017.