Overview of Quench Detection Method for Superconductor and Its Superconducting Equipment
Wang Shaorui1, Li Xianglin1, Zhang Zhiheng2, Sang Mingzhe1, Hua Wei2
1. College of Electrical Engineering Qingdao University Qingdao 266071 China; 2. School of Electrical Engineering Southeast University Nanjing 210096 China
Abstract:Superconducting machines with high torque density and efficiency are becoming a research hotspot. However, quench events in superconducting coils critically threaten their reliability and safety. Currently, the quench detection methods for superconducting machines remain underexplored. This paper evaluates the quench detection methods for superconductors in typical superconducting equipment. These methods are categorized and reviewed based on the different detection signals employed. The advantages, disadvantages, and suitable scenarios of quench detection methods are summarized, and the potential challenges are analyzed regarding the structural features and operational characteristics of superconducting machines, offering practical insights for quench detection of superconductors employed in superconducting machines. This paper introduces the characteristic changes of superconductors during quench to provide candidate physical signals for quench detection. Based on the differences in detection signals, the existing quench detection methods are categorized into two major types: temperature change and quench resistance change. In addition, the quench detection methods based on quench resistance change can be further divided into voltage and impedance change. The existing quench detection methods' principles, applicable objects, advantages, and disadvantages are analyzed and summarized. It provides methodological reference and technical support for the quench detection of superconducting coils in superconducting machines. The issues that need to be solved for quench detection are described. Subsequently, four feasible quench detection methods are illustrated. The challenges of existing quench detection methods are indicated based on superconducting machines’ structural features and operational characteristics. (1) Machine structural limitations: The superconducting coils are usually wrapped by electromagnetic shielding layers and placed inside a narrow Dewar in superconducting machines. These structural characteristics make it challenging to implement quench detection methods, which require installing sensors and laying signal wires. (2) Complex magnetic field environment: Due to armature and exciting fields, a complex and periodically changing magnetic field is generated during the operation of superconducting machines. As a result, quench detection methods based on magnetic field change and series thermocouples are susceptible to electromagnetic interference and have low detection accuracy. (3) Mechanical vibration and noise interference: There are unavoidable mechanical vibrations and noise during the operation of superconducting machines, severely reducing the reliability of the quench detection methods based on strain change and acoustic signal. Subsequently, a research direction for the quench detection method based on voltage change shows a high applicability. The future trend will be to develop a comprehensive detection method primarily based on voltage change, with the assistance of other quench detection methods.
王绍睿, 李祥林, 张志恒, 桑明哲, 花为. 超导体及其在超导设备中的失超检测方法综述[J]. 电工技术学报, 2025, 40(16): 5164-5185.
Wang Shaorui, Li Xianglin, Zhang Zhiheng, Sang Mingzhe, Hua Wei. Overview of Quench Detection Method for Superconductor and Its Superconducting Equipment. Transactions of China Electrotechnical Society, 2025, 40(16): 5164-5185.
[1] 杨军, 张哲, 尹项根, 等. 我国首套高温超导电缆并网运行情况[J]. 电网技术, 2005, 29(4): 4-7. Yang Jun, Zhang Zhe, Yin Xianggen, et al.On-line operation situation of first high temperature supercon- ducting cable system in China[J]. Power System Technology, 2005, 29(4): 4-7. [2] 戴少涛, 林良真, 林玉宝, 等. 75m三相交流高温超导电缆的研制[J]. 中国电机工程学报, 2007, 27(12): 91-96. Dai Shaotao, Lin Liangzhen, Lin Yubao, et al.Development of 75m long three-phase high tempera- ture super conducting power cable[J]. Proceedings of the CSEE, 2007, 27(12): 91-96. [3] 王银顺, 赵祥, 韩军杰, 等. 630kVA三相高温超导变压器的研制和并网试验[J]. 中国电机工程学报, 2007, 27(27): 24-31. Wang Yinshun, Zhao Xiang, Han Junjie, et al.Development and test in grid of 630 kVA three-phase high temperature superconducting transformer[J]. Proceedings of the CSEE, 2007, 27(27): 24-31. [4] Schwenerly S W, McConnell B W, Demko J A, et al. Performance of a 1-MVA HTS demonstration trans- former[J]. IEEE Transactions on Applied Supercondu- ctivity, 1999, 9(2): 680-684. [5] 张东, 孙明伦, 陈彪, 等. 基于国产YBCO带材的高温超导发电机的研制[J]. 中国电机工程学报, 2021, 41(1): 354-362, 424. Zhang Dong, Sun Minglun, Chen Biao, et al.Development of high temperature superconducting generator based on domestic YBCO tapes[J]. Pro- ceedings of the CSEE, 2021, 41(1): 354-362, 424. [6] Luongo C A, Baldwin T, Ribeiro P, et al.A 100 MJ SMES demonstration at FSU-CAPS[J]. IEEE Transa- ctions on Applied Superconductivity, 2003, 13(2): 1800-1805. [7] 程颐. 大型双定子超导磁场调制风力发电机关键技术研究[D]. 武汉: 华中科技大学, 2021. Cheng Yi.Research on key technologies of large- scale double-stator superconducting field modulation wind generator[D]. Wuhan: Huazhong University of Science and Technology, 2021. [8] 陈佳祥. 高温超导带材失超行为的光纤光栅测量研究[D]. 兰州: 兰州大学, 2019. Chen Jiaxiang.Measurement of quench behavior of high temperature superconducting tapes by fiber grating[D]. Lanzhou: Lanzhou University, 2019. [9] 喻小艳, 李敬东, 唐跃进, 等. 超导磁储能系统的失超检测及保护综述[J]. 高压电器, 2003, 39(5): 47-49. Yu Xiaoyan, Li Jingdong, Tang Yuejin, et al.Quench detection and protection in superconducting magnet energy storage system[J]. High Voltage Apparatus, 2003, 39(5): 47-49. [10] 童玉锦. 超导复合材料与结构的失超预测及其热弹性耦合行为研究[D]. 兰州: 兰州大学, 2020. Tong Yujin.Study on the quench prediction and thermoelastic coupling behavior of superconducting materials and structures[D]. Lanzhou: Lanzhou University, 2020. [11] van Delft D. History and significance of the discovery of superconductivity by Kamerlingh Onnes in 1911[J]. Physica C: Superconductivity, 2012, 479: 30-35. [12] Wang Xiaorong, Caruso A R, Breschi M, et al.Normal zone initiation and propagation in Y-Ba-Cu-O coated conductors with Cu stabilizer[J]. IEEE Transa- ctions on Applied Superconductivity, 2005, 15(2): 2586-2589. [13] Park Y G, Hwang Y J, Jang J Y, et al.Evaluation on electrical and thermal characteristics of multi-stacked HTS coated conductor with various stabilizers[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4700904. [14] Lee J D, Kwon Y K, Baik S K, et al.Thermal quench in HTS double pancake race track coil[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1603-1606. [15] Glowa N, Wesche R, Bruzzone P.Quench studies of YBCO insulated and noninsulated pancake coils[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4701105. [16] Majoros M, Sumption M D, Zhang Danlu, et al.Quench measurements in a YBCO pancake coil at 77 K and 4.2 K in magnetic fields up to 10 tesla[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 4600805. [17] Kim D, Kim J G, Kim A R, et al.Quench detection method of HTS model coil using a series-type thermocouple[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2462-2465. [18] Scurti F, Sathyamurthy S, Rupich M, et al.Self- monitoring ‘SMART’ (RE)Ba2Cu3O7-x conductor via integrated optical fibers[J]. Superconductor Science and Technology, 2017, 30(11): 114002. [19] Chiuchiolo A, Bajko M, Perez J C, et al.Fiber Bragg grating cryosensors for superconducting accelerator magnets[J]. IEEE Photonics Journal, 2014, 6(6): 0600310. [20] Chiuchiolo A, Bajas H, Bajko M, et al.Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics[C]//Sixth European Workshop on Optical Fibre Sensors, Limerick, Ireland, 2016: 99160A. [21] Turenne M, Johnson R, Hunte F, et al.Multi-purpose fiber optic sensors for high temperature super- conducting magnets[C]//2009 23rd IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA, USA, 2009: 1-4. [22] 郑一博, 王银顺, 戴静姝, 等. 基于FBG的直流高温超导电缆失超检测[J]. 低温与超导, 2015, 43(1): 1-7. Zheng Yibo, Wang Yinshun, Dai Jingshu, et al.Quench detection of DC HTS cable by using FBG[J]. Cryogenics & Superconductivity, 2015, 43(1): 1-7. [23] 刘延超. 高温超导体的光纤布拉格光栅 (FBG) 失超检测技术及交流损耗研究[D]. 北京: 北京交通大学, 2020. Liu Yanchao.Study on the FBG quench detection technology and AC loss of high temperature super- conductor[D]. Beijing: Beijing Jiaotong University, 2020. [24] 李晓飞. 基于瑞利散射分布式光纤的高温超导电流引线失超检测技术研究[D]. 合肥: 中国科学技术大学, 2022. Li Xiaofei.Research of quench detection in the HTS current leads using distributed optical fibers based on Rayleigh scattering[D]. Hefei: University of Science and Technology of China, 2022. [25] Froggatt M, Moore J.High-spatial-resolution dis- tributed strain measurement in optical fiber with Rayleigh scatter[J]. Applied Optics, 1998, 37(10): 1735-1740. [26] Scurti F, Ishmael S, Flanagan G, et al. Quench detection for high temperature superconductor magnets: a novel technique based on Rayleigh- backscattering interrogated optical fibers[J]. Super- conductor Science Technology, 2016, 29(3): 03LT01. [27] Scurti F, Schwartz J.Optical fiber distributed sensing for high temperature superconductor magnets[C]//2017 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 2017: 1-4. [28] Zhou J, Chan W K, Schwartz J.Quench detection criteria for YBa2Cu3O7-δ coils monitored via a distributed temperature sensor for 77 K cases[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(5): 4703012. [29] Chen Bin, Li Jiangang, Hu Yanlan, et al.Quench detection of Bi2223/Ag insulated double-pancake coil using distributed optic fiber sensor[J]. IEEE Transa- ctions on Applied Superconductivity, 2020, 30(3): 4700405. [30] Rogers A J.Polarisation optical time domain reflecto- metry[J]. Electronics Letters, 1980, 16(13): 489-490. [31] Hartog A.A distributed temperature sensor based on liquid-core optical fibers[J]. Journal of Lightwave Technology, 1983, 1(3): 498-509. [32] Dakin J P, Pratt D J, Bibby G W, et al.Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector[J]. Elec- tronics Letters, 1985, 21(13): 569-570. [33] 周胜军, 刘凤军, 蔡玉琴, 等. 分布式光纤温度传感器的原理和应用[J]. 半导体光电, 1998, 19(5): 287-290. Zhou Shengjun, Liu Fengjun, Cai Yuqin, et al.Theory and application of distributed optical fiber tempera- ture sensor[J]. Semiconductor Optoelectronics, 1998, 19(5): 287-290. [34] 张在宣. 光纤分子背向散射的温度效应及其在分布光纤温度传感网络上应用研究的进展[J]. 原子与分子物理学报, 2000, 17(3): 559-565. Zhang Zaixuan.The temperature effect of optical fiber back-scattering and the applied research for distributed optical fiber temperature sensor net- work[J]. Chinese Journal of Atomic and Molecular Physics, 2000, 17(3): 559-565. [35] 杨颂, 刘延超, 雷咸道, 等. 光纤传感技术在超导磁体状态监测中的应用研究[J]. 激光与光电子学进展, 2021, 58(11): 149-160. Yang Song, Liu Yanchao, Lei Xiandao, et al.Application of optical fiber sensing technology in state monitoring of superconducting magnet[J]. Laser & Optoelectronics Progress, 2021, 58(11): 149-160. [36] 何俊. 分布式光纤传感系统关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. He Jun.Research on some key technologies of distributed fiber sensing system[D]. Harbin: Harbin Institute of Technology, 2010. [37] 陈翠光. 基于背向瑞利散射的少模光纤传输特性测量技术研究[D]. 长春: 吉林大学, 2018. Chen Cuiguang.Research on transmission characte- ristics measurement of few-mode fiber based on Rayleigh backscattering[D]. Changchun: Jilin Univer- sity, 2018. [38] 陈斌. 面向高温超导磁体失超检测技术研究及相关实验[D]. 合肥: 中国科学技术大学, 2020. Chen Bin.Research and related experiments of quench detection technology for high-temperature superconducting magnet[D]. Hefei: University of Science and Technology of China, 2020. [39] 耿军平. 全分布式光纤传感器系统研究[D]. 西安: 西北工业大学, 2002. Geng Junping.Development of the fully distributed fiber optic sensor system[D]. Xi’an: Northwestern Polytechnical University, 2002. [40] 陈忠购. 基于声发射技术的钢筋混凝土损伤识别与劣化评价[D]. 杭州: 浙江大学, 2018. Chen Zhonggou.Damage identification and deterio- ration evaluation of RC based on acoustic emission technology[D]. Hangzhou: Zhejiang University, 2018. [41] 焦正宽, 陈灼民, 丁立人, 等. Nb-Ti超导体的声发射[J]. 物理学报, 1984, 33(4): 530-537. Jiao Zhengkuan, Chen Zhuomin, Ding Liren, et al.Acoustic emission in Nb-Ti superconductors[J]. Acta Physica Sinica, 1984, 33(4): 530-537. [42] Nomura H, Takahisa K, Koyama K, et al.Acoustic emission from superconducting magnets[J]. Cryogenics, 1977, 17(8): 471-481. [43] Pasztor G, Schmidt C.Acoustic emission from NBTi superconductors during flux jump[J]. Cryogenics, 1979, 19(10): 608-610. [44] Nomura H, Sinclair M N L, Iwasa Y. Acoustic emission in a composite copper NbTi conductor[J]. Cryogenics, 1980, 20(5): 283-289. [45] Arai K, Yamaguchi H, Kaiho K, et al.Acoustic emission induced from an alternating current super- conducting coil and quenching patterns[J]. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 685-688. [46] Arai K, Yamaguchi H, Kaiho K, et al.Acoustic emission induced from alternating current super- conducting coils resulting from vibration of windings[J]. IEEE Transactions on Applied Super- conductivity, 2001, 11(1): 1701-1704. [47] Arai K, Ninomiya A, Ishigohka T, et al.Acoustic emission during DC operations of the ITER Central Solenoid model coil[J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 504-507. [48] Ninomiya A, Arai K, Takano K, et al.Diagnosis of ITER’s large scale superconducting coils using acoustic emission techniques[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1408-1411. [49] Ishigohka T, Tsuchiya T, Adachi Y, et al.AE measurement of the LHD helical coils[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 1423-1426. [50] Nomura S, Kasuya K, Tanaka N, et al.Quench properties of a 7-T force-balanced helical coil for large-scale SMES[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2004-2007. [51] 邓明远, 任乃光. 超导磁体的声发射检测[J]. 低温与超导, 1982, 10(4): 65-72, 79. [52] Ninomiya A, Sakaniwa K, Kado H, et al.Quench detection of superconducting magnets using ultrasonic wave[J]. IEEE Transactions on Magnetics, 1989, 25(2): 1520-1523. [53] Marchevsky M, Prestemon S, Lobkis O, et al.Ultrasonic waveguides for quench detection in HTS magnets[J]. IEEE Transactions on Applied Super- conductivity, 2022, 32(6): 4701705. [54] Gyuráki R, Sirois F, Grilli F.High-speed fluorescent thermal imaging of quench propagation in high temperature superconductor tapes[J]. Superconductor Science Technology, 2018, 31(3): 034003. [55] Gyuráki R, Benkel T, Schreiner F, et al.Fluorescent thermal imaging of a non-insulated pancake coil wound from high temperature superconductor tape[J]. Superconductor Science and Technology, 2019, 32(10): 105006. [56] Sugimoto M, Kato T, Kawano K, et al.Test results of the DPC-TJ: thermal and hydraulic performance[J]. Cryogenics, 1993, 33(6): 597-602. [57] Sugimoto M, Kato T, Isono T, et al.Flow reduction by AC losses for a forced flow superconducting coil with a cable-in-conduit conductor[J]. Cryogenics, 1999, 39(4): 323-330. [58] Sugimoto M, Isono T, Koizumi N, et al.An evaluation of the inlet flow reduction for a cable in conduit conductor by rapid heating[J]. Cryogenics, 1999, 39(11): 939-945. [59] Loyd R J, Bulc A M, Chang C L.Coil protection for the 20.4 MWh SMES/ETM[J]. IEEE Transactions on Magnetics, 1991, 27(2): 1716-1719. [60] Wang Xingzhe, Guan Mingzhi, Ma Lizhen.Strain- based quench detection for a solenoid supercon- ducting magnet[J]. Superconductor Science Techno- logy, 2012, 25(9): 095009. [61] Guan Mingzhi, Wang Xingzhe, Zhou Youhe, et al.A criterion of the strain-based quench decision for a low-temperature superconducting solenoid[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 4700804. [62] Nanato N, Yanagishita M, Nakamura K.Quench detection of Bi-2223 HTS coil by partial active power detecting method[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2391-2393. [63] 方进, 丘明, 范瑜, 等. 超导磁体失超检测电路的设计[J]. 电工技术学报, 2012, 27(8): 239-247. Fang Jin, Qiu Ming, Fan Yu, et al.Design of the circuit in superconducting magnet quench detection[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 239-247. [64] Nanato N, Nakamura K.Quench detection method without a central voltage tap by calculating active power[J]. Cryogenics, 2004, 44(1): 1-5. [65] 喻小艳, 李敬东, 唐跃进. 超导电力装置失超检测的基础研究[J]. 中国工程科学, 2003, 5(10): 73-77. Yu Xiaoyan, Li Jingdong, Tang Yuejin.The basic study for quench detection in superconducting electric equipments[J]. Engineering Science, 2003, 5(10): 73-77. [66] Joo J H, Sano H, Kim S B, et al.Development of quench detection method based on normal transition behaviors for HTS coils[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2415-2418. [67] Joo J H, Sano H, Kadota T, et al.Study on quench protection method with regards to normal transition behavior for HTS coil[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 2027-2030. [68] Iwasa Y.Case Studies in Superconducting Magnets: Design and Operational Issues[M]. 2nd ed. New York: Springer, 2009. [69] 王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社, 2008. [70] 刘宏伟, 范霄汉, 张慧媛, 等. 低温绝缘的高温超导电缆失超检测研究[J]. 低温与超导, 2014, 42(2): 38-42, 94. Liu Hongwei, Fan Xiaohan, Zhang Huiyuan, et al.Research on quench detection of high-temperature superconducting cable[J]. Cryogenics & Supercon- ductivity, 2014, 42(2): 38-42, 94. [71] Marchevsky M, Xie Y Y, Selvamanickam V.Quench detection method for 2G HTS wire[J]. Superconductor Science and Technology, 2010, 23(3): 034016. [72] 余彬, 胡燕兰. 基于射频波技术的新型失超检测方法[J]. 低温物理学报, 2019, 41(1): 28-32. Yu Bin, Hu Yanlan.A novel quench detection method using radio frequency wave technology[J]. Low Temperature Physical Letters, 2019, 41(1): 28-32. [73] 诸嘉慧, 栗会峰, 陈晓宇, 等. 高温超导电缆交直流伏安特性测试与分析[J]. 电工技术学报, 2016, 31(24): 120-125. Zhu Jiahui, Li Huifeng, Chen Xiaoyu, et al.Test and analysis on the DC and AC I-V characteristics of high temperature superconducting cable[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 120-125. [74] 祝乘风, 厉彦忠, 谭宏博, 等. 热扰动冲击下的高温超导电缆失超恢复特性[J]. 电工技术学报, 2021, 36(18): 3884-3890. Zhu Chengfeng, Li Yanzhong, Tan Hongbo, et al.Numerical analysis on the quench and recovery of the high temperature superconducting cable subjected to thermal disturbance[J]. Transactions of China Elec- trotechnical Society, 2021, 36(18): 3884-3890. [75] 马韬, 朱志芹, 邱清泉, 等. 1250kV·A三相高温超导变压器的系统集成与试验[J]. 电工技术学报, 2016, 31(21): 188-195. Ma Tao, Zhu Zhiqin, Qiu Qingquan, et al.Integration and tests of the 1250 kV·A three-phase high temperature superconducting transformer[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(21): 188-195. [76] 诸嘉慧, 宝旭峥, 丘明, 等. 基于混合高温超导储能系统的电网动态功率补偿策略与试验[J]. 电工技术学报, 2012, 27(8): 14-20. Zhu Jiahui, Bao Xuzheng, Qiu Ming, et al.Power fluctuation compensation research in power system using a high temperature hybrid SMES[J]. Transa- ctions of China Electrotechnical Society, 2012, 27(8): 14-20. [77] 王玉彬. 旋转超导电机发展现状[J]. 电机与控制应用, 2020, 47(2): 1-8. Wang Yubin.Development status of rotating super- conducting motor[J]. Electric Machines & Control Application, 2020, 47(2): 1-8. [78] Kalsi S S, Weeber K, Takesue H, et al.Development status of rotating machines employing supercon- ducting field windings[J]. Proceedings of the IEEE, 2004, 92(10): 1688-1704. [79] Gamble B, Snitchler G, MacDonald T. Full power test of a 36.5 MW HTS propulsion motor[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1083-1088. [80] Frank M, Frauenhofer J, van Hasselt P, et al. Long-term operational experience with first Siemens 400 kW HTS machine in diverse configurations[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2120-2123. [81] Nick W, Grundmann J, Frauenhofer J.Test results from Siemens low-speed, high-torque HTS machine and description of further steps towards com- mercialisation of HTS machines[J]. Physica C: Superconductivity and Its Applications, 2012, 482: 105-110. [82] Yanamoto T, Izumi M, Umemoto K, et al.Load test of 3-MW HTS motor for ship propulsion[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(8): 5204305. [83] Zheng Jun, Xie Feng, Chen Wei, et al.The study and test for 1 MW high temperature superconducting motor[C]//IEEE/CSC & ESAS European Supercon- ductivity News Forum, 2012: 6-9. [84] 何杰. 高温超导海上风力发电机励磁绕组设计[D]. 武汉: 华中科技大学, 2015. He Jie.Design of the field winding for a high temperature[D]. Wuhan: Huazhong University of Science and Technology, 2015. [85] Song Xiaowei, Bührer C, Brutsaert P, et al.Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 757-764. [86] 李祥林, 王绍睿, 桑明哲, 等. 一种基于电机旋转对称性的超导电机失超检测方法及装置: CN117949822B[P]. 2024-06-14. [87] Tan Yingjie, Li Xianglin, Sang Mingzhe, et al.BP- model-based quench detection method for double- stator HTS-excitation field- modulation machine[J]. IEEE Transactions on Applied Superconductivity, 2023, 33(5): 5203407.