Temporal Modeling of Ice Disaster Scenarios and Optimization of Resilience Enhancement Strategies in Power Transmission Network Based on Multispectral Satellite Remote Sensing Data
Niu Tao1, Huang Qianqian1, Fang Sidun1, Li Xiaodong2, Liao Ruijin1
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
Abstract:Ice disasters can cause serious damage to power transmission network, it is crucial to enhance the resilience of power transmission network during ice disasters. Unlike extreme natural disasters such as hurricanes or earthquakes, ice disasters develop slowly and last long time. It is difficult to predict the development trend of ice disaster accurately due to the influence of microclimate and terrain on their geographic coverage. Currently, the spatiotemporal evolution patterns of ice disasters are not clear. The existing research on improving the resilience of power transmission networks considering the impact of ice disasters have not involved the temporal modeling of ice disaster scenarios. Therefore, the paper proposes a method for temporal modeling of ice storm scenarios based on multispectral satellite remote sensing. By combining multispectral remote sensing image fusion methods based on Laplacian pyramid decomposition, efficient extraction and analysis of the spatial distribution and temporal changes of ice-covered areas in Sentinel-2 satellite remote sensing images are achieved. Using partial differential convolution, ice-covered areas are predicted dynamically based on the fused images, and an ice disaster temporal model is constructed. Additionally, a conditional variational autoencoder is used to generate a set of ice disaster scenarios, which accurately reflect the spatiotemporal characteristics of "source-network-load" during ice disasters. Considering the interaction between the disaster development process and resilience enhancement measures, the power transmission system resilience can be simultaneously enhanced through both pre-disaster prevention and in-disaster repair measures. This paper proposes a comprehensive resilience evaluation index and constructs a two-stage robust resilience enhancement planning model for power transmission networks based on the set of ice disaster scenarios. The first stage focuses on pre-disaster fixed energy storage configuration and pre-planning of maintenance resources to find the optimal investment decision. The second stage focuses on in-disaster power supply through fixed energy storage and emergency maintenance considering limited maintenance resources, ensuring rapid response from fixed energy storage and maintenance teams after the occurrence time of the ice disaster, which aims to ensure rapid load recovery, maximize system resilience, and minimize system economic losses. The model is iteratively solved using a parallelizable column-and-constraint generation algorithm. Finally, case studies are conducted using ice-covered remote sensing data from a region in Yunnan and a modified IEEE RTS-79 power transmission system as the test system. The results show that the coordination of fixed energy storage power supply and emergency maintenance can effectively ensure power supply and transmission during ice disasters, as the system resilience improved by 90.97% and total system losses decreased by 43.19% during the ice disasters. Compared with other resilience enhancement strategies, the proposed strategy in this paper balances both economic efficiency and resilience. What’s more, different ice disaster center locations are set in the case study considering the inherent uncertainty of ice disasters. The results demonstrate that for ice disasters with multiple origins, the proposed method effectively ensures power restoration in the transmission system, enhances system resilience, reduces load shedding losses and total costs.
[1] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126. Xin Baoan, Shan Baoguo, Li Qionghui, et al.Rethinking of the “three elements of energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126. [2] 安学民, 孙华东, 张晓涵, 等. 美国得州“2·15”停电事件分析及启示[J]. 中国电机工程学报, 2021, 41(10): 3407-3415, 3666. An Xuemin, Sun Huadong, Zhang Xiaohan, et al.Analysis and lessons of Texas power outage event on February 15, 2021[J]. Proceedings of the CSEE, 2021, 41(10): 3407-3415, 3666. [3] 黄慧. 电力系统冰灾风险评估建模研究[D]. 广州: 华南理工大学, 2011. Huang Hui.Study on risk evaluation model of ice storm in power system[D]. Guangzhou: South China University of Technology, 2011. [4] 黄新波, 孙钦东, 程荣贵, 等. 导线覆冰的力学分析与覆冰在线监测系统[J]. 电力系统自动化, 2007, 31(14): 98-101. Huang Xinbo, Sun Qindong, Cheng Ronggui, et al.Mechanical analysis on transmission line conductor icing and application of on-line monitoring system[J]. Automation of Electric Power Systems, 2007, 31(14): 98-101. [5] 中国电力科学研究院. 湖南电网2008年冰雪灾害初步调研报告[R]. 北京: 中国电力科学研究院, 2008. [6] 国网北京电力建设研究院. 2008电网冰灾技术分析报告[R]. 北京: 国网北京电力建设研究院, 2008. [7] 胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(2): 215-219. Hu Yi.Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(2): 215-219. [8] Niu Tao, Huang Qianqian, Fang Sidun, et al.Multistage condition-based resilient maintenance scheduling for power systems during ice storms[J]. IEEE Transactions on Industry Applications, 2024, 60(2): 2201-2213. [9] 庄文兵, 祁创, 熊小伏, 等. 计及气象因素时间累积效应的输电线路覆冰预测[J]. 电力系统保护与控制, 2019, 47(17): 6-13. Zhuang Wenbing, Qi Chuang, Xiong Xiaofu, et al.Transmission line icing forecast considering the time cumulative effect of meteorological factors[J]. Power System Protection and Control, 2019, 47(17): 6-13. [10] 蒋兴良, 周文轩, 董莉娜, 等. 基于旋转圆柱三电极阵列的覆冰测量方法[J]. 电工技术学报, 2024, 39(5): 1524-1535. Jiang Xingliang, Zhou Wenxuan, Dong Lina, et al.Research on icing measurement method based on rotating cylindrical three-electrode array[J]. Transa-ctions of China Electrotechnical Society, 2024, 39(5): 1524-1535. [11] 吴海涛, 韩兴波, 蒋兴良, 等. 基于水滴碰冻效率的扩径导线防冰特性分析[J]. 电工技术学报, 2023, 38(11): 3033-3040, 3051. Wu Haitao, Han Xingbo, Jiang Xingliang, et al.Analysis of anti-icing characteristics of expanded diameter conductor based on water droplet collision and freezing efficiency[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3033-3040, 3051. [12] 杨国林, 蒋兴良, 廖乙, 等. 输电线路单导线自由扭转覆冰动态仿真研究[J]. 电工技术学报, 2024, 39(13): 4079-4089. Yang Guolin, Jiang Xingliang, Liao Yi, et al.Simulation study of the free torsional icing on single conductors of transmission lines[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4079-4089. [13] 赵建坤. 架空输电线路覆冰厚度预测模型研究[D]. 北京: 华北电力大学, 2016. Zhao Jiankun.Research on icing thickness prediction model of overhead transmission lines[D]. Beijing: North China Electric Power University, 2016. [14] 蒋兴良, 董冰冰, 张志劲, 等. 绝缘子覆冰闪络研究进展[J]. 高电压技术, 2014, 40(2): 317-335. Jiang Xingliang, Dong Bingbing, Zhang Zhijin, et al.Research and development on flashover of ice-covered insulators[J]. High Voltage Engineering, 2014, 40(2): 317-335. [15] 舒立春, 汪诗经, 叶开颜, 等. 风速对复合绝缘子覆冰增长及其闪络特性的影响[J]. 中国电机工程学报, 2015, 35(6): 1533-1540. Shu Lichun, Wang Shijing, Ye Kaiyan, et al.Influence of wind velocity on ice accretion and flashover performance of composite insulators[J]. Proceedings of the CSEE, 2015, 35(6): 1533-1540. [16] 常彦. 超高压输电线路防覆冰及防冰闪研究[D]. 北京: 华北电力大学, 2015. Chang Yan.Ultra high voltage transmission line anti icing and ice melting flashover research[D]. Beijing: North China Electric Power University, 2015. [17] 杨国林, 蒋兴良, 王茂政, 等. 输电线路单导线覆冰形状对直流大电流融冰时间的影响[J]. 电工技术学报, 2024, 39(9): 2916-2924. Yang Guolin, Jiang Xingliang, Wang Maozheng, et al.The impact of ice accumulation shape on the DC high current ice-melting time for a single conductor on power transmission line[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2916-2924. [18] 蒋兴良, 孟志高, 张志劲, 等. OPGW临界融冰电流及其影响因素[J]. 电工技术学报, 2016, 31(9): 174-180. Jiang Xingliang, Meng Zhigao, Zhang Zhijin, et al.Critical ice-melting current of ice-covered OPGW and its impacting factors[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 174-180. [19] 曾伟, 蒋兴良, 杨国林, 等. 基于记忆合金双程形状记忆效应的导线雾凇防冰方法及现场试验[J]. 电工技术学报, 2024, 39(7): 2174-2183. Zeng Wei, Jiang Xingliang, Yang Guolin, et al.Research on anti-icing method for fog freezing and field test of wires based on two-way shape memory effect of memory alloy[J]. Transactions of China Electrotechnical Society, 2024, 39(7): 2174-2183. [20] 章坚民, 王雨宽, 薛禹胜, 等. 自然灾害-电力系统-碳排放变化的贝叶斯网络建模与估计[J]. 电力系统自动化, 2023, 47(7): 1-11. Zhang Jianmin, Wang Yukuan, Xue Yusheng, et al.Bayesian network modeling and estimation of natural disaster-power system-carbon emission change[J]. Automation of Electric Power Systems, 2023, 47(7): 1-11. [21] 孙羽, 王秀丽, 王建学, 等. 架空线路冰风荷载风险建模及模糊预测[J]. 中国电机工程学报, 2011, 31(7): 21-28. Sun Yu, Wang Xiuli, Wang Jianxue, et al.Wind and ice loading risk model and fuzzy forecast for overhead transmission lines[J]. Proceedings of the CSEE, 2011, 31(7): 21-28. [22] 潘斌, 张勇军, 黄慧. 多因子电网冰灾风险评估建模[J]. 电网技术, 2012, 36(5): 102-106. Pan Bin, Zhang Yongjun, Huang Hui.Modeling for multi-factor risk assessment on ice disaster of power system[J]. Power System Technology, 2012, 36(5): 102-106. [23] 张勇军, 许亮, 吴成文. 计及多因素的电网冰灾风险评估模型研究[J]. 电力系统保护与控制, 2012, 40(15): 12-17. Zhang Yongjun, Xu Liang, Wu Chengwen.Research on ice disaster risk evaluation model of power system considering multi-factors[J]. Power System Protection and Control, 2012, 40(15): 12-17. [24] 王建学, 张耀, 吴思, 等. 大规模冰灾对输电系统可靠性的影响分析[J]. 中国电机工程学报, 2011, 31(28): 49-56. Wang Jianxue, Zhang Yao, Wu Si, et al.Influence of large-scale ice disaster on transmission system reliability[J]. Proceedings of the CSEE, 2011, 31(28): 49-56. [25] 徐文军, 杨洪明, 赵俊华, 等. 冰风暴灾害下电力断线倒塔的概率计算[J]. 电力系统自动化, 2011, 35(1): 13-17. Xu Wenjun, Yang Hongming, Zhao Junhua, et al.Probability calculation of broken transmission lines and collapsed towers under ice storms[J]. Automation of Electric Power Systems, 2011, 35(1): 13-17. [26] 谢云云, 薛禹胜, 文福拴, 等. 冰灾对输电线故障率影响的时空评估[J]. 电力系统自动化, 2013, 37(18): 32-41, 98. Xie Yunyun, Xue Yusheng, Wen Fushuan, et al.Space-time evaluation for impact of ice disaster on transmission line fault probability[J]. Automation of Electric Power Systems, 2013, 37(18): 32-41, 98. [27] Lu Jiazheng, Guo Jun, Jian Zhou, et al.Dynamic assessment of resilience of power transmission systems in ice disasters[C]//2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 2018: 7-13. [28] Yan Mingyu, Ai Xiaomeng, Shahidehpour M, et al.Enhancing the transmission grid resilience in ice storms by optimal coordination of power system schedule with pre-positioning and routing of mobile DC de-icing devices[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2663-2674. [29] Lu Jiazheng, Guo Jun, Jian Zhou, et al.Resilience assessment and its enhancement in tackling adverse impact of ice disasters for power transmission systems[J]. Energies, 2018, 11(9): 2272. [30] 龙玉洁, 李为乐, 黄润秋, 等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版), 2020, 45(11): 1792-1800. Long Yujie, Li Weile, Huang Runqiu, et al.Automatic extraction and evolution trend analysis of landslides in Mianyuan River Basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1792-1800. [31] 周学珍. 遥感技术在矿山地质灾害监测中的应用: 以陕西神府煤矿区为例[J]. 能源环境保护, 2013, 27(1): 52-55. Zhou Xuezhen.Application of remote sensing technology to the monitoring of mine geological disaster: an example in Shenfu Coal Mine Region in Shaanxi[J]. Energy Environmental Protection, 2013, 27(1): 52-55. [32] Heap M J, Villeneuve M, Albino F, et al.Towards more realistic values of elastic moduli for volcano modelling[J]. Journal of Volcanology and Geothermal Research, 2020, 390: 106684. [33] Zhu Xiaoyan, Zhang Renzhi, Sun Xuwei.Spatiote-mporal dynamics of soil erosion in the ecotone between the Loess Plateau and Western Qinling Mountains based on RUSLE modeling, GIS, and remote sensing[J]. Arabian Journal of Geosciences, 2021, 14(1): 33. [34] Aghelpour P, Guan Yiqing, Bahrami-Pichaghchi H, et al.Using the MODIS sensor for snow cover modeling and the assessment of drought effects on snow cover in a mountainous area[J]. Remote Sensing, 2020, 12(20): 3437. [35] Muhuri A, Gascoin S, Menzel L, et al.Performance assessment of optical satellite-based operational snow cover monitoring algorithms in forested landscapes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7159-7178. [36] Ali S, Cheema M J M, Waqas M M, et al. Changes in snow cover dynamics over the Indus Basin: evidences from 2008 to 2018 MODIS NDSI trends analysis[J]. Remote Sensing, 2020, 12(17): 2782. [37] Ma Jiayi, Ma Yong, Li Chang.Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. [38] Gan Wei, Wu Xiaohong, Wu Wei, et al.Infrared and visible image fusion with the use of multi-scale edge-preserving decomposition and guided image filter[J]. Infrared Physics & Technology, 2015, 72: 37-51. [39] Long Zichao, Lu Yiping, Ma Xianzhong, et al.PDE-Net: learning PDEs from data[C]//Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Sweden, 2018: 3208-3216. [40] Subcommittee P M. IEEE reliability test system[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(6): 2047-2054.