Abstract:Ice accretion on transmission lines posts great threat to the operation of power grid. Various new methods and technical measures have been exploring to achieving anti-icing and de-icing of transmission lines. In this paper, self-heating rings made of ferromagnetic material are fixed on the conductor to achieve anti-icing without power outage. Exposed in the magnetic field and generated by the transmission current, strong magnetic field will be induced in self-heating rings and lead to magnetic heat loss for anti-icing. In this paper, the thermal power characteristics of the self-heating rings with different transmission currents are calculated by magnetothermal analysis. At the same time, the critical de-icing power of conductor with different wind speed and temperature conditions is calculated by analyzing the thermal conservation. Anti-icing test of LGJ-400/35 conductor with self-heating rings is performed in artificial climate chamber. The results show that self-heating ring can reduce the ice accretion on conductor obviously. There is no ice formed on the conductor where self-heating rings fixed. Furthermore, the total ice mass on conductor decreased 18.38%~30.61% in test condition. Therefore, for the transmission line in heavy icing areas, the use of self-heating rings is a simple and feasible way to preventing icing disaster.
黄亚飞, 蒋兴良, 任晓东, 黎芷毓. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J]. 电工技术学报, 2021, 36(10): 2169-2177.
Huang Yafei, Jiang Xingliang, Ren Xiaodong, Li Zhiyu. Study on Preventing Icing Disasters of Transmission Lines by Use of Eddy Self-Heating Ring. Transactions of China Electrotechnical Society, 2021, 36(10): 2169-2177.
[1] 蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2002. [2] 张志劲, 张翼, 蒋兴良, 等. 基于标准旋转导体等效碰撞系数的绝缘子覆冰表征[J]. 电工技术学报, 2018, 33(21): 5119-5127. Zhang Zhijing, Zhang Yi, Jiang Xingliang, et al.Characteristics of insulator icing presented based on the equivalent collision coefficient of standard rotating conductor[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5119-5127. [3] 何青, 李军辉, 邓梦妍, 等. 架空输电导线覆冰冻结系数计算及其影响因素分析[J]. 电工技术学报, 2019, 34(19): 4162-4169. He Qing, Li Junhui, Deng Mengyan, et al.Calcu- lation of icing freezing coefficient of overhead transmission line and analysis of influencing factors[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4162-4169. [4] 苑吉河, 蒋兴良, 易辉, 等. 输电线路导线覆冰的国内外研究现状[J]. 高电压技术, 2004, 30(1): 6-9. Yuan Jihe, Jiang Xingliang, Yi Hui, et al.The present study on conductor icing of transmission lines[J]. High Voltage Engineering, 2004, 30(1): 6-9. [5] 李再华, 白晓民, 周子冠, 等. 电网覆冰防治方法和研究进展[J]. 电网技术, 2008, 32(4): 7-13. Li Zaihua, Bai Xiaomin, Zhou Ziguan, et al.Prevention and treatment methods of ice coating in power networks and its recent study[J]. Power System Technology, 2008, 32(4): 7-13. [6] 蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469. Jiang Xingliang, Zhang Zhijin, Hu Qin, et al.Thinking on the restrike of ice and snow disaster to the power grid[J]. High Voltage Engineering, 2018, 44(2): 463-469. [7] Li Sisi, Wang Yuhong, Li Xingyuan, et al.Review of de-icing methods for transmission lines[C]//2010 International Conference on Intelligent System Design and Engineering Application, Changsha, 2010: 310-313. [8] Deepika Sinha, Srijana Bharadwaj, Vikas Kumar.A review paper on icing and methods to de-ice the transmission line[J]. International Journal of Engin- eering Research and Reviews, 2015, 3(2): 5-9. [9] 巢亚锋, 岳一石, 王成, 等. 输电线路融冰、除冰技术研究综述[J]. 高压电器, 2016, 52(11): 1-9. Chao Yafeng, Yue Yishi, Wang Cheng, et al.De-icing techniques for ice-covered transmission lines: a review[J]. High Voltage Apparatus, 2016, 52(11): 1-9. [10] 蒋兴良, 王大兴, 范松海, 等. 直流融冰过程中覆冰导线表面最高温度试验研究[J]. 高电压技术, 2009, 35(11): 2796-2800. Jiang Xingliang, Wang Daxing, Fan Songhai, et al.Experimental research on maximum temperature of ice-covered conductors during DC ice-melting[J]. High Voltage Engineering, 2009, 35(11): 2796-2800. [11] 蒋兴良, 范松海, 胡建林, 等. 输电线路直流短路融冰的临界电流分析[J]. 中国电机工程学报, 2010, 30(1): 111-116. Jiang Xingliang, Fan Songhai, Hu Jianlin, et al.Analysis of critical ice-melting current for short- circuit DC transmission line[J]. Proceedings of the CSEE, 2010, 30(1): 111-116. [12] Fan Songhai, Jiang Xingliang, Shu Lichun, et al.DC ice-melting model for wet-growth icing conductor and its experimental investigation[J]. Science China Technological Sciences, 2010, 53(12): 3248-3257. [13] 蒋兴良, 万启发, 吴盛麟, 等. 输电线路除冰新技术——低居里(LC)磁热线在线路除冰中的应用[J]. 高电压技术, 1992, 18(3): 55-58. Jiang Xingliang, Wan Qifa, Wu Shenglin, et al.A new deicing method-application of a magnetic material wire with low curie point in the deicing of trans- mission lines[J]. High Voltage Engineering, 1992, 18(3): 55-58. [14] 高小玫, 周寿增, 张茂才, 等. 磁电复合线材磁热效应的计算与分析[J]. 北京科技大学学报, 1998, 20(1): 72-76. Gao Xiaomei, Zhou Shouzeng, Zhang Maocai, et al.Calculation and analysis of magnetothermal effect of magnetoelectric composite wire[J]. Journal of Univer- sity of Science and Technology of Beijing, 1998, 20(1): 72-76. [15] 李宭, 张荣, 方威, 等. 一种低居里点磁性材料钢丝在架空输电线缆中的应用研究[C]//第四届中国功能材料及其应用学术会议, 厦门, 2001: 431-433. [16] 蒋兴良, 范松海, 孙才新, 等. 低居里点铁磁材料在输电线路防冰中应用前景分析[J]. 南方电网技术, 2008, 2(2): 19-22. Jiang Xingliang, Fan Songhai, Sun Caixin, et al.Analysis on application of the magnetic material of low curie point to deicing of transmission lines[J]. Southern Power System Technology, 2008, 2(2): 19-22. [17] 蒋兴良, 姜方义, 汪泉霖, 等. 基于最优时间步长模型的输电导线雾凇覆冰预测[J]. 电工技术学报, 2018, 33(18): 4408-4418. Jiang Xingliang, Jiang Fangyi, Wang Quanlin, et al.Prediction of rime accretion on transmission line based on optimal time step model[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4408-4418. [18] 韩兴波, 蒋兴良, 毕聪来, 等. 基于分散型旋转圆导体的覆冰参数预测[J]. 电工技术学报, 2019, 34(5): 1096-1105. Han Xingbo, Jiang Xingliang, Bi Conglai, et al.Prediction of icing environment parameters based on decentralized rotating conductors[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1096-1105. [19] Farzaneh M, Baker C T, Bernstorf A, et al.Insulator icing test methods and procedures a position paper prepared by the IEEE task force on insulator icing test methods[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1503-1515. [20] IEEE 1783: Guide for test methods and procedures to evaluate the electrical performance of insulators in freezing conditions[S]. New York, 2009.