Application of Element Distribution and Topography Information Fusion Method Based on NSST in Contact Surface Microscopic Analysis
Li Wenhua1, Zhao Peidong1, Zhao Zhengyuan2, Pan Ruzheng1, Hu Kangsheng1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Jointly Constructed by Hebei University of Technology Tianjin 300130 China; 2. Shenyang Railway Signal Co. Ltd Shenyang 110000 China
Abstract:Aiming at the problem that it is difficult to evaluate the contact surface completely when observing a single-modal image, in order to effectively deploy all relevant information from multiple modalities into a single-modal image, the paper proposes a non-subsampled shearlet transform (NSST) fusion method of element distribution and topography information. For the analysis of the element distribution on the contact surface recorded by scanning electron microscope & X-ray energy dispersive spectrometer (SEM&EDS) and the surface microtopography information recorded by 3D non-contact analysis system. First, with the help of whale optimization algorithm (WOA), the registration method based on B-spline is adopted. Next, a new weighted energy fusion rule is applied to achieve the fusion of multi-mode images with different resolutions. Finally, different element distributions are delineated from the fused contact images. Through the fusion results, the material transfer and microstructure of the contact were analyzed, and the element distribution on the contact surface was studied. It lays a foundation for analyzing the structure change of contact surface, analyzing and locating the surface fouling film and calculating the contact resistance accurately.
李文华, 赵培董, 赵正元, 潘如政, 胡康生. 基于非下采样剪切波变换的元素分布与形貌信息融合方法在触头表面微观分析上的应用[J]. 电工技术学报, 2022, 37(13): 3331-3340.
Li Wenhua, Zhao Peidong, Zhao Zhengyuan, Pan Ruzheng, Hu Kangsheng. Application of Element Distribution and Topography Information Fusion Method Based on NSST in Contact Surface Microscopic Analysis. Transactions of China Electrotechnical Society, 2022, 37(13): 3331-3340.
[1] 傅中, 陈维江, 李志兵, 等. 大容量电容器组用断路器弧触头侵蚀状态的评价方法[J]. 中国电机工程学报, 2016, 36(36): 5668-5677. Fu Zhong, Chen Weijiang, Li Zhibing, et al.Assessment method of arcing contacts erosion condition of circuit breakers used for large capacity capacitor banks[J]. Proceedings of the CSEE, 2016, 36(36): 5668-5677. [2] 翟国富, 薄凯, 周学, 等. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 251-263. Zhai Guofu, Bo Kai, Zhou Xue, et al.Investigation on breaking arc in DC high-power relays: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 251-263. [3] Angadi S V, Jackson R L, Pujar V, et al.A comprehensive review of the finite element modeling of electrical connectors including their contacts[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(5): 836-844. [4] Wu Qiong, Xu Guofu, Yuan Meng, et al.Influence of operation numbers on arc erosion of Ag/CdO electrical contact materials[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2020, 10(5): 845-857. [5] 张颖, 王景芹, 康慧玲, 等. 金属掺杂AgSnO2触头材料的仿真与实验[J]. 电工技术学报, 2021, 36(8): 1587-1595. Zhang Yin, Wang Jingqin, Kang Huiling, et al.Simulation and experiment of metal-doped AgSnO2 contact material[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1587-1595. [6] 付思, 曹云东, 李静, 等. 触头分离瞬间真空金属蒸气电弧形成过程的仿真[J]. 电工技术学报, 2020, 35(13): 2922-2931. Fu Si, Cao Yundong, Li Jing, et al.Simulation researches on vacuum metal vapor arc formation at the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931. [7] 于杰, 陈敬超, 周晓龙, 等. AgSnO2触头材料电弧侵蚀特征的分子动力学模拟[J]. 材料工程, 2010(3): 8-12. Yu Jie, Chen Jingchao, Zhou Xiaolong, et al.Molecular dynamics simulation for arc erosion morphology of AgSnO2 materials[J]. Journal of Materials Engineering, 2010 (3): 8-12. [8] Akbi M.Effects of arcing in air on the microstructure and morphology of silver-based contact materials in correlation with their electron emission properties[J]. IEEE Transactions on Plasma Science, 2016, 44(9): 1847-1857. [9] 王振宇, 刘晗, 黄锡文, 等. 钨和氧化钨对银镍触头材料性能的影响[J]. 电工材料, 2015, 137(2): 3-6. Wang Zhenyu, Liu Han, Huang Xiwen, et al.Effects of tungsten and tungsten oxide particles on contact performance for silver-nickel contacts[J]. Electrical Materials, 2015, 137(2): 3-6. [10] 陈强, 李庆民, 丛浩熹,等. 引入多重边界条件的GIS母线温度分布多场耦合计算及影响因素分析[J]. 电工技术学报, 2016, 31(17): 187-195. Chen Qian, Li Qingmin, Cong Haoxi, et al.Numerical calculation and correlative factors analysis on temperature distribution of GIS bus bar based on coupled multi-physics methodology combined with multiple boundary condition[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 187-195. [11] 马光磊. 电弧侵蚀下 Ag/SnO2电接触复合材料的失效机理研究[D]. 杭州: 浙江大学, 2020. [12] 刘育林, 朱圣宇, 于源, 等. 铝掺杂WC-Co基硬质合金的高温摩擦学性能,磨损机理及抗氧化性能研[J]. 摩擦学学报, 2019, 193(5): 45-56. Liu Yulin, Zhu Shengyu, Yu Yuan, et al.Wear mechanism, tribological and anti-oxidation properties of Al doped WC-Co hardmetals under high temperature[J]. Journal of Tribology, 2019, 193(5): 45-56. [13] 覃亚丽, 梅济才, 任宏亮, 等. 基于高斯平滑压缩感知分数阶全变分算法的图像重构[J]. 电子与信息学报, 2021, 43(7): 2105-2112. Qin Yali, Mei Jicai, Ren Hongliang, et al.Image reconstruction based on gaussian smooth compressed sensing fractional order total variation algorithm[J]. Journal of Electronics and Information Technology , 2021, 43(7): 2105-2112. [14] Boveiri H R, Khayami R, Javidan R, et al.Medical image registration using deep neural networks: a comprehensive review[J]. Computers & Electrical Engineering, 2020, 87: 106767. [15] Du Jiao, Li Weisheng, Tan Heliang.Intrinsic image decomposition-based grey and pseudo-color medical image fusion[J]. IEEE Access, 2019, 7: 56443-56456. [16] 卢振泰, 张娟, 冯前进, 等. 基于局部方差与残差复杂性的医学图像配准[J]. 计算机学报, 2015, 38(12): 2400-2411. Lu Zhentai, Zhang Juan, Feng Qianjin, et al.Medical image registration based on local variance and residual complexity[J]. Chinese Journal of Computers, 2015, 38(12): 2400-2411. [17] 赵莉华, 徐立, 刘艳, 等. 基于点对称变换与图像匹配的变压器机械故障诊断方法[J]. 电工技术学报, 2021, 36(17): 3614-3626. Zhao Lihua, Xu Li, Liu Yan, et al.Transformer mechanical fault diagnosis method based on symmetrized dot patter and image matching[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3614-3626. [18] 伍龙华, 黄惠. 点云驱动的计算机图形学综述[J]. 计算机辅助设计与图形学学报, 2015, 27(8): 1341-1353. Wu Longhua, Huang Hui.Survey on points-driven computer graphics[J]. Journal of Computer-Aided Design & Computer Graphics, 2015, 27(8): 1341-1353. [19] 梁有腾, 余辉, 张书旭. 基于3种配准方法的宫颈癌外照射放疗累积剂量研究[J]. 中国医学物理学杂志, 2018, 35(2): 151-155. Liang Youteng, Yu Hui, Zhang Shuxu.Accumulated dose in external radiation for cervical cancer based on three registration methods[J]. Chinese Journal of Medical Physics, 2018, 35(2): 151-155 [20] Chen Xuan.Research on new adaptive whale algorithm[J]. IEEE Access, 2020, 8: 90165-90201. [21] Di Gai, Shen Xuanjing, Hang Cheng, et al.Medical image fusion via PCNN based on edge preservation and improved sparse representation in NSST domain[J]. IEEE Access, 2019, 7: 85413-85429. [22] 江平, 张强, 李静, 等. 基于NSST和自适应PCNN的图像融合算法[J]. 激光与红外, 2014, 44(1): 108-113. Jiang Ping, Zhang Qiang, Li Jing, et al.Fusion algorithm for infrared and visible image based on NSST and adaptive PCNN[J]. Laser & Infrared, 2014, 44(1):108-113. [23] Ganasala P, Prasad A D.Contrast enhanced multi sensor image fusion based on guided image filter and NSST[J]. IEEE Sensors Journal, 2019, 20(2): 939-946. [24] 郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用[J]. 自动化学报, 2013, 39(1): 23-32. Zheng Qiang, Dong Enqing.Nnarrow band active contour model and its application in local segmentation of medical and texture images[J]. Acta Automatica Sinica, 2013, 39(1): 23-32. [25] Iqbal E, Niaz A, Memon A A, et al.Saliency-driven active contour model for image segmentation[J]. IEEE Access, 2020, 8: 208978-208991. [26] 陈立伟, 蒋勇. 图像融合算法的综合性能评价指标[J]. 计算机工程, 2015, 41(2): 219-223. Chen Liwei, Jiang Yong.Comprehensive performance evaluation index of image fusion algorithm[J]. Computer Engineering, 2015, 41(2): 219-223. [27] 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J]. 摩擦学学报, 2019, 193(5): 136-148. Xie Bohua, Ju Pengfei, Ji Li, et al.Research progress on tribology of electrical contact materials[J]. Tribological Review, 2019, 193(5): 136-148.