A Series DC Arcing Fault Recognition Method Based on Sliding Discrete Fourier Transform
Wang Yao1, Li Yang2, Ge Leijiao3, Niu Feng1, 4, Li Kui1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. School of Electrical Engineering and Automation Tianjin Polytechnic University Tianjin 300387 China; 3. School of Electrical and Information Engineering Tianjin University Tianjin 300072 China; 4. School of Electrical Engineering Zhejiang University Hangzhou 310027 China
Abstract:Series DC arcing fault pose an extreme safety risk in DC power system because it is difficult to be detected. A sliding discrete fourier transform (DFT) based arcing fault recognition method is proposed to meet the requirement of real-time in detection and reduction in algorithm complexity. The arcing initiation stage is the best moment for fault detection based on analysis both in time domain and in frequency domain. Accordingly, three characteristic frequencies, 40 kHz, 80 kHz and 100 kHz, are selected for the point by point sliding DFT calculation. Moreover, a time-window of 200μs is used to implement the algorithm for simplicity and accuracy. Finally, it is concluded that all the three spectrums increase significantly during the arcing fault. And the sliding DFT algorithm can be applied for series DC arcing fault recognition.
王尧,李阳,葛磊蛟,牛峰,李奎. 基于滑动离散傅里叶变换的串联直流电弧故障识别[J]. 电工技术学报, 2017, 32(19): 118-124.
Wang Yao, Li Yang, Ge Leijiao, Niu Feng, Li Kui. A Series DC Arcing Fault Recognition Method Based on Sliding Discrete Fourier Transform. Transactions of China Electrotechnical Society, 2017, 32(19): 118-124.
[1] 姚秀, 汲胜昌, Luis Herrera, 等. 串联直流电弧特性及其在故障诊断中的应用[J] . 高压电器, 2012, 48(5): 6-10. Yao Xiu, Ji Shengchang, Luis Herrera, et al. Series DC arc characteristic study and the application in fault recognition[J] . High Voltage Apparatus, 2012, 48(5): 6-10. [2] 姚钢, 陈少霞, 王伟峰, 等. 分布式电源接入直流微电网的研究综述[J] . 电器与能效管理技术, 2015(4): 1-6. Yao Gang, Chen Shaoxia, Wang Weifeng, et al. Overview of research on DC micro-grid for distributed power access[J] . Electrical and Energy Efficiency Management Technology, 2015(4): 1-6. [3] 秦红霞, 王成山, 刘树, 等. 智能微网与柔性配网相关技术探讨[J] . 电力系统保护与控制, 2016, 44(20): 17-23. Qin Hongxia, Wang Chengshan, Liu Shu, et al. Discussion on the technology of intelligent micro-grid and flexible distribution system[J] . Power System Protection and Control, 2016, 44(20): 17-23. [4] 周逢权, 黄伟. 直流配电网系统关键技术探讨[J] . 电力系统保护与控制, 2014, 42(22): 62-67. Zhou Fengquan, Huang Wei. Study on the key technology of DC distribution power network[J] . Power System Protection and Control, 2014, 42(22): 62-67. [5] 李雪辰, 赵欢欢, 贾鹏英, 等. 常压空气中大间隙介质阻挡放电特性[J] . 高电压技术, 2013, 39(4): 876-882. Li Xuechen, Zhao Huanhuan, Jia Pengying, et al. Characteristics of dielectric barrier discharge in large air gap at atmospheric pressure[J] . High Voltage Engineering, 2013, 39(4): 876-882. [6] 王流火, 王立军, 杨鼎革, 等. 电极材料和直径对真空电弧电压和阳极活动影响的实验研究[J] . 中国电机工程学报, 2012, 32(34): 173-180. Wang Liuhuo, Wang Lijun, Yang Dingge, et al. Experimental study on effects of electrode materials and diameter on the high-current vaccm arc voltage and anode activities[J] . Proceedings of the CSEE, 2012, 32(34): 173-180. [7] Ammerman R F, Gammon T, Sen P K, et al. DC- arc models and incident-energy calculations[J] . IEEE Transactions on Industry Applications, 2010, 46(5): 1810-1819. [8] 刘晓明, 徐叶飞, 刘婷, 等. 基于电流信号短时过零率的电弧故障检测[J] . 电工技术学报, 2015, 30(13): 125-133. Liu Xiaoming, Xu Yefei, Liu Ting, et al. The arc fault detection based on the current signal short time zero crossing rate[J] . Transactions of China Electrotechnical Society, 2015, 30(13): 125-133. [9] 张冠英, 张晓亮, 刘华, 等. 低压系统串联故障电弧在线检测方法[J] . 电工技术学报, 2016, 31(8): 109-115. Zhang Guanying, Zhang Xiaoliang, Liu Hua, et al. Online detection method for series arcing fault in low voltage system[J] . Transactions of China Electrotechnical Society, 2016, 31(8): 109-115. [10] 杨凯, 张认成, 杨建红, 等. 基于分形维数和支持向量机的串联电弧故障诊断方法[J] . 电工技术学报, 2016, 31(2): 70-77. Yang Kai, Zhang Rencheng, Yang Jianhong, et al. Series arc fault diagnostic method based on fractal dimension and support vector machine[J] . Transactions of China Electrotechnical Society, 2016, 31(2): 70-77. [11] 刘艳丽, 郭凤仪, 王智勇, 等. 基于信息熵的串联型故障电弧频谱特征研究[J] . 电工技术学报, 2015, 30(12): 488-495. Liu Yanli, Guo Fengyi, Wang Zhiyong, et al. Research on the spectral characteristics of series arc fault based on information entropy[J] . Transactions of China Electrotechnical Society, 2015, 30(12): 488-495. [12] 范李平, 袁兆强, 张凯. 基于小波变换的单相接地故障电弧模型及其PSCAD/EMTDC 仿真研究[J] . 电力系统保护与控制, 2011, 39(5): 51-56. Fan Liping, Yuan Zhaoqiang, Zhang Kai. Simulation on arc model of single phase earth fault and PSCAD/EMTDC based on wavelet transformation[J] . Power System Protection and Control, 2011, 39(5): 51-56. [13] 祝令瑜, 由志勋, 刘源, 等. 低压串联直流电弧检测方法的研究现状及发展[J] . 绝缘材料, 2015, 48(5) : 1-5. Zhu Lingyu, You Zhixun, Liu Yuan, et al. Research status and development of detection methods of low voltage series DC arc[J] . Insulating Material, 2015, 48(5): 1-5. [14] Yao Xiu, Herrera L, Wang Jin. A series DC arc fault detection method and hardware implementation[C] // Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition, Long Beach, USA, 2013: 2444-2449. [15] Yao Xiu, Herrera L, Ji Shengchang, et al. Characteristic study and time domain-discrete wavelet transform based hybrid detection of series DC arc faults[J] . IEEE Transactions on Power Electronics, 2014, 29(6): 3103-3115. [16] 刘源, 汲胜昌, 祝令瑜, 等. 直流电源系统中直流电弧特性及其检测方法研究[J] . 高压电器, 2015, 51(2): 24-29. Liu Yuan, Ji Shengchang, Zhu Lingyu, et al. Characteristics and detection of DC arc in DC power system[J] . High Voltage Apparatus, 2015, 51(2): 24-29. [17] Shea J J, Luebke C J, Parker K L. RF current produced from DC electrical arcing[C] //26th International Conference on Electrical Contacts, Beijing, China, 2012: 1-6. [18] UL1699B photovoltaic (PV) DC arc-fault circuit protection[S] . Underwriters Laboratories Inc., 2011. [19] 黄寒华. 滑动DFT算法研究[D] . 南京: 东南大学, 2006. [20] Seo G S, Kim K A, Lee K C, et al. A new DC arc fault detection method using DC system component modeling and analysis in low frequency range[C] //IEEE Applied Power Electronics Conference and Exposition, Charlotte, USA, 2015: 2438-2444.