The Dielectric Properties of PI/ZnO Composite Films Based on Trap Level Distribution
Li Tianjiao1, Zhang Bo2, Wu Jiang1,2
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. College of Electronic Information Xi’an Polytechnic University Xi’an 710048 China
Abstract:The operating stability of spacecraft in the space environment is closely related to the insulation performance of aerospace dielectric materials such as polyimide (PI), and the carrier trap inside the dielectric material is one of the important factors affecting the insulation performance. Therefore, exploring the impact of trap distribution on the electrical properties of dielectric materials is of great significance to ensure the safe use of spacecraft dielectric materials. In this paper, nano-PI/ZnO composite films with different doping levels (0.5%, 1%, 3%) are prepared and tested for dielectric properties. The energy distribution of thin film bulk traps and surface traps are measured by thermally stimulated depolarization currents method and isothermal surface potential decay method respectively, the carrier mobility is calculated, and the volume resistivity and breakdown field strength are measured. Based on the multi-core model, the phenomenon that the introduction of nano-ZnO changes the dielectric properties of polymers is explained, and the influence mechanism of deep and shallow traps on polarized ions is analyzed from the perspective of trap level. This paper can provide new ideas and methods for regulating the insulation properties of materials and improving the safety of spacecraft.
李天娇, 张博, 乌江. 基于陷阱分布的PI/ZnO复合薄膜介电特性[J]. 电工技术学报, 2022, 37(6): 1554-1563.
Li Tianjiao, Zhang Bo, Wu Jiang. The Dielectric Properties of PI/ZnO Composite Films Based on Trap Level Distribution. Transactions of China Electrotechnical Society, 2022, 37(6): 1554-1563.
[1] Hastings D, Garret H.Spacecraft environment inter-actions[M]. Cambridge: Cambridge University Press, 1996. [2] Gu Yidong, Gao Ming, Zhao Guangheng.Science research and utilization planning of China's space station in operation period 2022-2032[J]. Chinese Journal of Space Science, 2020, 40(5): 609-614. [3] 刘尚合, 胡小锋, 原青云, 等. 航天器充放电效应与防护研究进展[J]. 高电压技术, 2019, 45(7): 2108-2118. Liu Shanghe, Hu Xiaofeng, Yuan Qingyun, et al.Research progress in charging-discharging effects and protection of spacecraft[J]. High Voltage Engineering, 2019, 45(7): 2108-2118. [4] 董国静, 刘涛, 李庆民. 脉冲电应力下空气-聚酰亚胺绝缘沿面放电过程数值模拟[J]. 电工技术学报, 2020, 35(9): 2006-2019. Dong Guojing, Liu Tao, Li Qingmin.Numerical simulation for surface discharge of air-polyimide insulation under pulsed electrical stress[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(9): 2006-2019. [5] Liaw D J, Wang K L, Huang Yingchi, et al.Advanced polyimide materials: syntheses physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7): 907-974. [6] Yang Yang, He Jinliang, Wu Guangning, et al.“Thermal Stabilization Effect” of Al2O3 nano-dopants improves the high-temperature dielectric performance of polyamide[J]. Scientific Reports, 2015, 5(1): 16986. [7] 何丽娟, 马玥, 杨雄, 等. 三层LDPE/MgO纳米复合材料界面空间电荷特性[J]. 电机与控制学报, 2020, 24(8): 109-114, 130. He Lijuan, Ma Yue, Yang Xiong, et al.Space charge characteristics at interface in triple-layered structures with LDPE/MgO nanocomposites[J]. Electric Machines and Control, 2020, 24(8): 109-114, 130. [8] 张博, 乌江, 郑晓泉. 改性聚酰亚胺表面稳定性与真空直流沿面闪络抑制方法研究[J]. 电工技术学报, 2019, 34(13): 2846-2853. Zhang Bo, Wu Jiang, Zheng Xiaoquan.Study of the surface stability of modified polyimide and the suppression method of surface flashover under DC voltage in vacuum[J]. Transactions of China Electro-technical Society, 2019, 34(13): 2846-2853. [9] Zhou Guiyue, Wu Jiandong, Zhang Yu, et al.Investi-gation of charge transport in LDPE/SiO2 nanocom-posite based on the simultaneous observation of charge and current behaviour[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1981-1988. [10] Han Yongsen, Li Shengtao, Min Daomin.Trap energy distribution in polymeric insulating materials through surface potential decay method[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2018, 25(2): 639-648. [11] Diaham S.Modulation of the dielectric breakdown strength in polyimide nanocomposites by deep traps tailoring in interphase regions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 247-252. [12] Tanaka T, Kozako M, Fuse N, et al.Proposal of a multi-core model for polymer nanocomposite di-electrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [13] 翟燕. PMDA-ODA型聚酰亚胺聚集态结构的可控制备及其薄膜性能研究[D]. 成都: 四川大学, 2007. [14] Han Bai, Gao Xin, Wang Jianyu, et al.Trap character-ristics of zeolite/LDPE nanocomposites investigated by difference method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 760-767. [15] 南江, 刘诚威, 夏平安. 聚四氟乙烯/纳米碳化硅改性复合材料的制备及其介电特性[J]. 电工技术学报, 2021, 36(增刊1): 1-7. Nan Jiang, Liu Chengwei, Xia Ping'an.Preparation and dielectric characteristics of nano-SiC/PTFE composite[J]. Transactions of China Electrotechnical Society, 2021, 36(S1): 1-7. [16] 张晓彤. 基于威布尔分布的涡扇发动机寿命预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [17] 董明, 杨凯歌, 马馨逸, 等. 纳米改性变压器油中载流子输运特性分析[J]. 电工技术学报, 2020, 35(21): 4597-4608. Dong Ming, Yang Kaige, Ma Xinyi, et al.Analysis of charge-carrier transport characteristics of transformer oil-based nanofuids[J]. Transactions of China Electro-technical Society, 2020, 35(21): 4597-4608. [18] Tian Fuqiang, Bu Wenbin, Shi Linshuang, et al.Theory of modified thermally stimulated current and direct determination of trap level distribution[J]. Journal of Electrostatics, 2011, 69(1): 7-10. [19] 何金良, 彭思敏, 周垚, 等. 聚合物纳米复合材料的界面特性[J]. 中国电机工程学报, 2016, 36(24): 6596-6605. He Jinliang, Peng Simin, Zhou Yao, et al.Interface properties of polymer nanocomposites[J]. Proceedings of the CSEE, 2016, 36(24): 6596-6605. [20] 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. Luo Yang, Wu Guangning, Peng Jia, et al.Research progress in interface properties of polymer nanocom-posite dielectric[J]. High Voltage Engineering, 2012, 38(9): 2455-2464. [21] Simmons J G, Tam M C.Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions[J]. Physical Review B, 1973, 7(8): 3706-3713. [22] Yang Chun, Zhang Ying, He Lijuan, et al.Study on the trap distribution in polyimide thin film based on TSDC method[C]//IEEE International Conference on the Properties and Applications of Dielectric Materials, Harbin, China, 2009: 911-913. [23] 杨国清, 刘庚, 王德意, 等. 超支化聚酯改性纳米SiO2/环氧树脂的电树枝生长特性[J]. 电工技术学报, 2020, 35(20): 4415-4422. Yang Guoqing, Liu Geng, Wang Deyi, et al.Growth characteristics of electric tree for Nano-SiO2/Epoxy resin modified by hyperbranched polyester[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(20): 4415-4422. [24] 高宇, 杜伯学. 采用表面电位衰减法表征高压交联聚乙烯电缆绝缘中空间电荷的输运特性[J]. 高电压技术, 2012, 38(8): 2097-2103. Gao Yu, Du Boxue.Characterization method for carrier trap and the effect on insulation breakdown within polymer insulating materials[J]. High Voltage Engineering, 2012, 38(8): 2097-2103. [25] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro-technical Society, 2019, 34(1): 179-191.