Design of Grounding System for Carbon Fiber Composite Car Body of Maglev Train
Cai Jiao1, Wang Shujin2, Zhang Liwei2, Yang Jun3, Shen Lu2
1. Information Technology Center Beijing Jiaotong University Beijing 100044 China; 2. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 3. CRRC Tangshan Co. Ltd Tangshan 063035 China
Abstract:The grounding system is an important factor affecting the operation safety of maglev train. The structure of maglev train body, track structure and current collection mode are obviously different from other wheel rail traffic modes, so the grounding design needs special consideration. At the same time, with the application of lightweight carbon fiber composite materials in the maglev car body, the car body has become a poor conductor, and the grounding equipment can not be connected to the earth through the car body, which makes the grounding system become a difficult problem in the design of carbon fiber car body. Based on this, this paper analyzes the influence of carbon fiber composite structure on the grounding circuit of car body. After introducing the main grounding technology classification of maglev train, a set of design ideas of grounding system for carbon fiber composite car body structure is proposed. Then, on the basis of theoretical analysis, the grounding circuit model is built with Maxwell simulation software, and the resistance of vehicle body grounding circuit is calculated by simulation. Finally, the distribution of fault current in grounding circuit is analyzed to evaluate the effectiveness of grounding system.
蔡娇, 王舒瑾, 张立伟, 杨君, 申璐. 磁悬浮列车碳纤维复合材料车体接地系统设计[J]. 电工技术学报, 2021, 36(zk2): 746-754.
Cai Jiao, Wang Shujin, Zhang Liwei, Yang Jun, Shen Lu. Design of Grounding System for Carbon Fiber Composite Car Body of Maglev Train. Transactions of China Electrotechnical Society, 2021, 36(zk2): 746-754.
[1] Sun Yuanxiang, Li Zhen, Zhang Zhenbin.Hybrid predictive control with simple linear control based circulating current suppression for modular multi-level converters[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(4): 335-341. [2] 吴树强. 中低速磁悬浮供电系统的技术特点研究[J]. 铁道工程学报, 2015, 32(8): 87-90. Wu Shuqiang.Research on the technical characteri-stics of power supply system for medium and low speed maglev vehicles[J]. Journal of Railway Engineering Society, 2015, 32(8): 87-90. [3] 孙才勤. 中低速磁浮牵引供电系统接地保护方案探析[J]. 电气化铁道, 2018, 29(6): 81-82, 86. Sun Caiqin.Discussion of earthing protection scheme for traction power supply system of medium and low speed magnetic levitation[J]. Electric Railway, 2018, 29(6): 81-82, 86. [4] 孙鹏琨, 葛琼璇, 王晓新, 等. 基于硬件在环实时仿真平台的高速磁悬浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(16): 3426-3435. Sun Pengkun, Ge Qiongxuan, Wang Xiaoxin, et al.Traction control strategy of high-speed maglev train based on hardware-in-the-loop real-time simulation platform[J]. Transactions of China Electrotechnical Society, 2020, 35(16): 3426-3435. [5] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074. Zhu Jinquan, Ge Qiongxuan, Sun Pengkun, et al.Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(5): 1065-1074. [6] 王德发. 长沙磁浮快线工程的防雷接地设计要点[J]. 城市轨道交通研究, 2017, 20(12): 113-115, 119. Wang Defa.Design of lightning protection and grounding for Changsha maglev express project[J]. Urban Mass Transit, 2017, 20(12): 113-115, 119. [7] 陈晶晶, 马德明. 高速铁路常用供电方式接地回流研究[J]. 铁道技术监督, 2007(10): 24-26. Chen Jingjing, Ma Deming.Analyze the earthing and return of power supply for high-speed railway[J]. Railway Quality Control, 2007(10): 24-26. [8] 郭蕾, 古维富, 刘彬, 等. 杆塔接地装置的冲击阻抗建模及应用[J]. 电工技术学报, 2020, 35(10): 2239-2247. Guo Lei, Gu Weifu, Liu Bin, et al.Impulse impedance modeling and application of tower grounding device[J]. Transactions of China Electro-technical Society, 2020, 35(10): 2239-2247. [9] 刘晓波, 杨颖. 轻量化高性能碳纤维复合材料车体研发关键技术[J]. 合成纤维, 2013, 42(10): 29-34. Liu Xiaobo, Yang Ying.Key technologies of lightweight and high-performance carbon fiber composite train carbody[J]. Synthetic Fiber in China, 2013, 42(10): 29-34. [10] 王晶, 徐博雅, 李天亮. 碳纤维复合材料车体设计关键技术研究[J]. 科技创新与应用, 2017(13): 75-76. Wang Jing, Xu Boya, Li Tianliang.Research on key technology of car body design of carbon fiber composite material[J]. Technology Innovation and Application, 2017(13): 75-76. [11] Chen Wenjun, Chen Jingsong, Cheng Wenbo, et al.Status quo of research on impact damage of composites in aircraft[J]. Key Engineering Materials, 2017, 4364: 33-40. [12] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. Ma Limin, Zhang Jiazhen, Yue Guangquan, et al.Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322. [13] 张宇. 复合材料飞机的电流回路接地技术研究[J].航空科学技术, 2011(6): 27-30. Zhang Yu.Research of current return path of composite aircraft[J]. Aeronautical Science & Tech-nology, 2011(6): 27-30. [14] 何长川, 梁伟, 杨乃宾. 新一代大型客机复合材料结构一体化设计的若干特点[J]. 中国管理信息化, 2017, 20(4): 139-141. He Changchuan, Liang Wei, Yang Naibin.Chara-cteristics of composite structure integrated design of new generation large aircraft[J]. China Management Informationization, 2017, 20(4): 139-141. [15] 齐彪, 张雯, 赵宇航. 中低速磁悬浮列车车下布线方式研究[J]. 科技创新与应用, 2017(15): 67-68. Qi Biao, Zhang Wen, Zhao Yuhang.Research on wiring mode under medium and low speed maglev train[J]. Technology Innovation and Application, 2017(15): 67-68. [16] 司远, 王泽忠, 刘连光, 等. 基于Kriging法的直流接地极附近大地电性结构建模方法[J]. 电工技术学报, 2020, 35(21): 4448-4454. Si Yuan, Wang Zezhong, Liu Lianguang, et al.Modeling method of geoelectric structure near DC grounding electrode based on Kriging method[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4448-4454. [17] 边晓伟. 高速动车组接地技术及检修方案分析[J].装备维修技术, 2019(4): 191. Bian Xiaowei.Analysis on grounding technology and maintenance scheme of high-speed railway[J]. Equipment Technology, 2019(4): 191. [18] 薛永端, 刘珊, 王艳松, 等. 基于零序电压比率制动的小电阻接地系统接地保护[J]. 电力系统自动化, 2016, 40(16): 112-117. Xue Yongduan, Liu Shan, Wang Yansong, et al.Grounding fault protection in low resistance grounding system based on zero-sequence voltage ratio restraint[J]. Automation of Electric Power Systems, 2016, 40(16): 112-117. [19] 王慧康, 杨晓峰, 倪梦涵, 等. 轨道电位与杂散电流动模实验平台[J]. 电工技术学报, 2020, 35(17): 3609-3618. Wang Huikang, Yang Xiaofeng, Ni Menghan, et al.Rail potential and stray current dynamic emulator[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3609-3618. [20] 王人鹏, 周勇, 程玉民. 复合材料磁悬浮列车车体结构数值模拟(I)——适应车体设计的参数化有限元模型[J]. 计算机辅助工程, 2019, 28(3): 54-60. Wang Renpeng, Zhou Yong, Cheng Yumin.Numeri-cal simulation on composite vehicle structure of maglev train (I): parametric finite element model for train body design[J]. Computer Aided Engineering, 2019, 28(3): 54-60. [21] 马淋淋, 梁艳萍. 可控磁饱和电抗器在中压电网接地系统中运行状况的建模与仿真[J]. 电机与控制学报, 2018, 22(3): 59-65. Ma Linlin, Liang Yanping.Modeling and simulation of magnetically controlled saturated reactor in medium-voltage power grid system[J]. Electric Machines and Control, 2018, 22(3): 59-65. [22] Schmid P, Eberhard P, Dignath F.Nonlinear model predictive control for a maglev vehicle regarding magnetic saturation and guideway irregularities[J]. IFAC-PapersOnLine, 2019, 52(15): 145-150.