Effect of Different Patterns of Transcranial Magnetic Stimulation on the Correlation of Neural Network During Working Memory Task of Rats
Guo Miaomiao1,2, Wang Zhonghao1,2, Zhang Tianheng1,2, Ji Lihui1,2, Xu Guizhi1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health Hebei University of Technology Tianjin 300130 China
Abstract:Transcranial magnetic stimulation (TMS) has been widely used in clinical neurologic regulation due to its painless and noninvasive characteristics. Working memory (WM) is an important cognitive function, but the effect mechanism of TMS on working memory function is still unclear and the influence of TMS with various modes on the nervous system is quite different. Therefore, it is of great clinical significance to explore the effect mechanism of TMS on working memory. In this paper, adult Wistar rats were divided into control group, repetitive transcranial magnetic stimulation (rTMS) group, continuous Theta burst stimulation (cTBS) group and intermittent Theta burst stimulation (iTBS) group. The local field potential signals (LFPs) of prefrontal cortex (PFC) in the four groups were collected synchronously by implanting multichannel electrodes in vivo during the T-maze working memory task. Finally, the effects of different modes of TMS on neural network in working memory were explored by comparative analysis of the behavioral differences, the correlation of LFPs and the network connection characteristics of LFPs in the four groups. The behavioral results showed that the time for the rats in the stimulation groups to reach the task correction criterion was less than that of the control group (P<0.05. The correlation results showed that the correlation coefficient of LFPs between electrode pairs in the stimulation model group was higher than that in the control group. The network connection density and the global efficiency of LFPs obviously increased in the stimulation group (P<0.05). In conclusion, iTBS, cTBS and rTMS can improve the association synchronization of PFC in adult Wistar rats to a certain extent, and the improvement effect of iTBS is the best, which can provide theoretical support for further exploring the effect of TMS on WM.
郭苗苗, 王中豪, 张天恒, 吉利辉, 徐桂芝. 经颅磁刺激模式差异性对大鼠工作记忆神经网络关联特性的影响研究[J]. 电工技术学报, 2021, 36(18): 3808-3820.
Guo Miaomiao, Wang Zhonghao, Zhang Tianheng, Ji Lihui, Xu Guizhi. Effect of Different Patterns of Transcranial Magnetic Stimulation on the Correlation of Neural Network During Working Memory Task of Rats. Transactions of China Electrotechnical Society, 2021, 36(18): 3808-3820.
[1] Klomjai W, Katz R, Lackmy-Vallée A.Basic princi-ples of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS)[J]. Annals of Physical and Rehabilitation Medicine, 2015, 58(4): 208-213. [2] Simonetta-Moreau M.Non-invasive brain stimulation (NIBS) and motor recovery after stroke[J]. Annals of Physical and Rehabilitation Medicine, 2014, 57(8): 530-542. [3] 李江涛, 曹辉, 郑敏军, 等. 多通道经颅磁刺激线圈阵列的驱动与控制[J]. 电工技术学报, 2017, 32(22): 158-165. Li Jiangtao, Cao Hui, Zheng Minjun, et al.The drive and control of multi-channel transcranial magnetic stimulation coil array[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 158-165. [4] 熊慧, 王玉领, 付浩, 等. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686. Xiong Hui, Wang Yuling, Fu Hao, et al.An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(4): 679-686. [5] Rossi S, Hallett M, Rossini P M, et al.Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research[J]. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 2009, 120(12): 2008-2039. [6] Walsh V, Cowey A.Transcranial magnetic stimu-lation and cognitive neuroscience[J]. Nature Reviews Neuroscience, 2000, 1(1): 1-9. [7] 李江涛, 郑敏军, 曹辉. 经颅磁刺激技术的研究进展[J]. 高电压技术, 2016, 42(4): 1168-1178. Li Jiangtao, Zheng Minjun, Cao Hui.Research progress in transcranial magnetic stimulation tech-nology[J]. High Voltage Engineering, 2016, 42(4): 1168-1178. [8] 张帅, 崔琨, 史勋, 等. 经颅磁声电刺激参数对神经元放电模式的影响分析[J]. 电工技术学报, 2019, 34(10): 1-9. Zhang Shuai, Cui Kun, Shi Xun, et al.Effect analysis of transcranial magneto-acousto-electrical stimulation parameters on neural firing patterns[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1-9. [9] 许毅, 李达, 谭立文, 等. 重复经颅磁刺激治疗专家共识[J]. 转化医学杂志, 2018, 7(1): 4-9. Xu Yi, Li Da, Tan Liwen, et al.Chinese experts consensus on repetitive transcranial tagnetic stimu-lation[J]. Journal of Naval General Hospital, 2018, 7(1): 4-9. [10] Huang Yingzu, Edwards M J, Rounis E, et al.Theta burst stimulation of the human motor cortex[J]. Neuron, 2005, 45(2): 201-206. [11] Wimmer K, Nykamp D Q, Constantinidis C, et al.Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory[J]. Nature Neuroscience, 2014, 17(3): 431-439. [12] Laroche S, Davis S, Jay T M.Plasticity at hippo-campal to prefrontal cortex synapses: dual roles in working memory and consolidation[J]. Hippocampus, 2000, 10(4): 438-446. [13] Ashdown-Franks G, Firth J, Carney R, et al.Exercise as medicine for mental and substance use disorders: a meta-review of the benefits for neuropsychiatric and cognitive outcomes[J]. Sports Medicine, 2020, 50(1): 1-20. [14] 白杨, 杨佳佳, 郑晨光. Gamma节律: 认知障碍疾病的潜在诊断靶点[J]. 生物化学与生物物理进展, 2020, 47(6): 523-537. Bai Yang, Yang Jiajia, Zheng Chenguang.Gamma rhythms: a potential diagnostic target for cognitive disorders[J]. Progress in Biochemistry and Biophysics, 2020, 47(6): 523-537. [15] 张帅, 高昕宇, 周振宇, 等. 基于GrC模型的经颅磁声电刺激对神经元放电活动的影响[J]. 电工技术学报, 2019, 34(17): 3572-3580. Zhuang Shuai, Gao Xinyu, Zhou Zhenyu, et al.Effect of transcranial magnetic-acoustic electrical stimu-lation coupling electrical stimulation on neuronal discharge activity based on GrC model[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(17): 3572-3580. [16] 陈忠, 张世红. 深部脑刺激在神经精神疾病治疗中的应用研究进展[J]. 浙江大学学报, 2009, 38(6): 549-558. Chen Zhong, Zhang Shihong.Advances in application of deep brain stimulation in treatment of neuropsycholo-gical diseases[J]. Journal of Zhejiang University, 2009, 38(6): 549-558. [17] Guo Zhiwei, Jiang Zhijun, Jiang Binghu, et al.High-frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation[J]. Neural Plasticity, 2019, 2019(1): 1-11. [18] De Witte S, Baeken C, Pulopulos M M, et al.The effect of neurostimulation applied to the left dorso-lateral prefrontal cortex on post-stress adaptation as a function of depressive brooding[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 96(1): 1-9. [19] Di Lorenzo F, Martorana A, Ponzo V, et al.Cere-bellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer's disease patients[J]. Frontiers in Aging Neuroscience, 2013, 5(2): 1-8. [20] Cheng C M, Juan C H, Chen M H, et al.Different forms of prefrontal theta burst stimulation for executive function of medication-resistant depression: evidence from a randomized sham-controlled study[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 66(1): 35-40. [21] Ziemann U.Thirty years of transcranial magnetic stimulation: where do we stand?[J]. Experimental Brain Research, 2017, 235(4): 973-984. [22] Canolty R T, Knight R T.The functional role of cross-frequency coupling[J]. Trends in Cognitive Sciences, 2010, 14(11): 506-515. [23] Roux F, Uhlhaas P J.Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information?[J]. Trends in Cognitive Sciences, 2014, 18(1): 16-25. [24] Li Shuangyan, Bai Wenwen, Liu Tiaotiao, et al.Increases of theta-low gamma coupling in rat medial prefrontal cortex during working memory task[J]. Brain Research Bulletin, 2012, 89(3): 115-123. [25] Chang C W, Lo Y C, Lin Shenghuang, et al.Modu-lation of theta-band local field potential oscillations across brain networks with central thalamic deep brain stimulation to enhance spatial working memory[J]. Frontiers in Neuroscience, 2019, 13(1): 1-11. [26] Yu Chunxiu, Fan D, Lopez A, et al.Dynamic changes in single unit activity and gamma oscillations in a thalamocortical circuit during rapid instrumental learning[J]. PLOS One, 2012, 7(11): 1-10. [27] Rubinov M, Sporns O.Complex network measures of brain connectivity: uses and interpretations[J]. NeuroImage, 2010, 52(3): 1059-1069. [28] Seth Anil K.A Matlab toolbox for Granger causal connectivity analysis[J]. Journal of Neuroscience Methods, 2010, 186(2): 262-273. [29] Fairhall A L, Lewen G D, Bialek W, et al.Efficiency and ambiguity in an adaptive neural code[J]. Nature, 2001, 412(6849): 787-792. [30] Achard S, Bullmore E.Efficiency and cost of economical brain functional networks[J]. PLOS Computational Biology, 2007, 3(2): 174-183. [31] Sung W C, Nigel C R, Kate E H, et al.Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance[J]. Human Brain Mapping, 2018, 39(2): 783-802. [32] Yang Huiyun, Liu Yang, Xie Jiacun, et al.Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats[J]. Behavioural Brain Research, 2015, 281: 149-155. [33] Zhang N, Xing M, Wang Y, et al.Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia[J]. Neuroscience, 2015, 311: 284-291. [34] 王玲, 杨佳佳, 王发颀, 等. 经颅磁刺激对抑郁模型动物的作用研究进展[J]. 中国生物医学工程学报, 2018, 37(4): 498-507. Wang Ling, Yang Jiajia, Wang Faqi, et al.Research progress of effects of transcranial magnetic stimu-lation on the depression animal model[J]. Chinese Journal of Biomedical Engineering, 2018, 37(4): 498-507. [35] Benchenane K, Peyrache A, Khamassi M, et al.Coherent theta oscillations and reorganization of spike timing in the hippocampal prefrontal network upon learning[J]. Neuron, 2010, 66(6): 921-936. [36] 郭磊, 陈云阁, 王瑶, 等. 基于C0复杂度的磁刺激内关穴的脑功能网络构建与分析[J]. 电工技术学报, 2017, 32(12): 155-163. Guo Lei, Chen Yunge, Wang Yao, et al.Construction and analysis of brain functional network based on C0 complexity Neiguan[J]. Transactions of China Elec-trotechnical Society, 2017, 32(12): 155-163. [37] Song Jiaqi, Liu Dan, Zhang Meng, et al.Intermittent theta burst stimulation (iTBS) combined with working memory training to improve cognitive function in schizophrenia: study protocol for a randomized controlled trial[J]. Trials, 2020, 21(1): 1-10. [38] Vignaud P, Damasceno C, Poulet E, et al.Impaired modulation of corticospinal excitability in drug-free patients with major depressive disorder: a theta burst stimulation study[J]. L'Encéphale, 2019, 45(2): 572-573. [39] Zhang Guoqin, Ruan Xiuhang, Li Yuting, et al.Intermittent theta-burst stimulation reverses the after-effects of contralateral virtual lesion on the suprahyoid muscle cortex: evidence from dynamic functional connectivity analysis[J]. Frontiers in Neuroscience, 2019, 13(309): 1-10. [40] Ruan Xiuhang, Zhang Guoqin, Xu Guangqing, et al.The after-effects of theta burst stimulation over the cortex of the suprahyoid muscle on regional homogeneity in healthy subjects[J]. Frontiers in Behavioral Neuro-science, 2019, 13(35): 1-12. [41] 张琼. 重复经颅磁刺激对精神分裂症辅助治疗的临床疗效研究[D]. 上海: 上海交通大学, 2018. [42] 李惠, 徐冰清, 李春波, 等. θ 短阵快速脉冲重复经颅磁刺激治疗抑郁症[J]. 内科理论与实践, 2011, 6(3): 188-191. Li Hui, Xu Bingqing, Li Chunbo, et al.Theta-burst repetitive transcranial magnetic stimulation in treatment of depression: a randomized double blind controlled trial[J]. Journal of Internal Medicine Concepts & Practice, 2011, 6(3): 188-191.