An Energy Efficient Excitation Source for Transcranial Magnetic Stimulation with Controllable Pulse Width
Xiong Hui1,2, Wang Yuling1,2, Fu Hao1,2, Liu Jinzhen1,2, Zhu Jianguo1,3
1. School of Electrical Engineering and Automation Tianjin Polytechnic UniversityTianjin 300387 China; 2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China; 3. School of Electrical and Information Engineering The University of Sydney Sydney NSW 2006 Australia
Abstract:In order to improve the energy saving rate of the excitation source, based on cTMS1, a novel energy efficient excitation source topology is proposed and the EEES circuit structure and switch control method are designed in this paper. Firstly, the pulse width is adjusted by controlling the on-time of the switch. Then the circuit topology is designed to realize energy recovery and reuse, which can improve the energy utilization of the system. Finally, the EEES experimental platform is built to verify the system performance. The experimental results demonstrate that the EEES can generate current pulses up to 1 058A with an adjustable pulse range of 5~160μs. Compared with the cTMS1 excitation source, the energy self-loss rate is obviously lower than cTMS1, and the energy saving rate of EEES is as high as 62.60%~93.21%. Therefore, the EEES system proposed in this paper provides an important reference for the development of TMS excitation source.
熊慧, 王玉领, 付浩, 刘近贞, 朱建国. 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35(4): 679-686.
Xiong Hui, Wang Yuling, Fu Hao, Liu Jinzhen, Zhu Jianguo. An Energy Efficient Excitation Source for Transcranial Magnetic Stimulation with Controllable Pulse Width. Transactions of China Electrotechnical Society, 2020, 35(4): 679-686.
[1] Barker A T, Jalinous R, Freeston I L.Noninvasive magnetic stimulation of the human motor cortex[J]. Lancet, 1985, 325(8437): 1106-1107. [2] Hallett M.Transcranial magnetic stimulation: a primer[J]. Neuron, 2007, 55(2): 187-199. [3] Peterchev A V, Wagner T A, Miranda P C, et al.Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices[J]. Brain Stimulation, 2012, 5(4): 435-453. [4] Gattinger N, Moessnang G, Gleich B. flexTMS-a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(7): 1962-1970. [5] Gomez L, Cajko F, Hernandez-Garcia L, et al.Numerical analysis and design of single-source multicoil TMS for deep and focused brain stimulation[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2771-2782. [6] Roth Y, Levkovitz Y, Pell G S, et al.Safety and characterization of a novel multi-channel TMS stimulator[J]. Brain Stimulation, 2014, 7(2): 194-205. [7] 李江涛, 曹辉, 郑敏军, 等. 多通道经颅磁刺激线圈阵列的驱动与控制[J]. 电工技术学报, 2017, 32(22): 158-165. Li Jiangtao, Cao Hui, Zheng Minjun, et al.The drive and control of multi-channel transcranial magnetic stimulation coil array[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 158-165. [8] Heise K F, Zimerman M, Hoppe J, et al.The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance[J]. Journal of Neuroscience, 2013, 33(21): 9039-9049. [9] Quartarone A, Bagnato S, Rizzo V, et al.Abnormal associative plasticity of the human motor cortex in writer's cramp[J]. Brain, 2003, 126(12): 2586-2596. [10] Sailer A, Molnar G F, Paradiso G, et al.Short and long latency afferent inhibition in Parkinson's disease[J]. Brain, 2003, 126(8): 1883-1894. [11] 张帅, 崔琨, 史勋, 等. 经颅磁声电刺激参数对神经元放电模式的影响分析[J]. 电工技术学报, 2019, 34(10): 1-9. Zhang Shuai, Cui Kun, Shi Xun, et al.Effect analysis of transcranial magneto-acousto-electrical stimulation parameters on neural firing patterns[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1-9. [12] O'Reardon J P, Solvason H B, Janicak P G, et al. Reply regarding "efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial"[J]. Biological Psychiatry, 2010, 62(11): 1208-1216. [13] Wassermann E M, Zimmermann T.Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps[J]. Pharmacology & Therapeutics, 2012, 133(1): 98-107. [14] Lipton R B, Dodick D W, Silberstein S D, et al.Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, double-blind, parallel-group, sham-controlled trial[J]. Lancet Neurology, 2010, 9(4): 335-337. [15] Barker A T, Freeston I L, Jalinous R, et al.Motor responses to non-invasive brain stimulation in clinical practice[J]. Electroencephalography & Clinical Neurophysiology, 1985, 61(3): S70. [16] Nahas Z.Handbook of transcranial magnetic stimulation[J]. Journal of Psychiatry & Neuroscience, 2003, 28(5): 373-375. [17] Barker A T, Garnham C W, Freeston I L.Magnetic nerve stimulation: the effect of waveform on efficiency, determination of neural membrane time constants and the measurement of stimulator output[J]. Electroencephalography & Clinical Neuro- physiology Supplement, 1991, 43(43): 227. [18] Hsu K H, Nagarajan S S, Durand D M.Analysis of efficiency of magnetic stimulation[J]. IEEE Transa- ctions on Bio-Medical Engineering, 2003, 50(11): 1276-1285. [19] Ruohonen J, Virtanen J, Ilmoniemi R J.Coil optimization for magnetic brain stimulation[J]. Annals of Biomedical Engineering, 1997, 25(5): 840-849. [20] Novickij V, Grainys A, Novickij J, et al.Pro- grammable pulsed magnetic field system for biological applications[J]. IEEE Transactions on Magnetics, 2014, 50(11): 1-4. [21] Xiong Hui, Sun Wanpeng, Liu Jinzhen, et al.A multifunctional energy-saving magnetic field gener- ator[J]. Review of Scientific Instruments, 2018, 89(3): 034704. [22] Goetz S M, Truong C N, Gerhofer M G, et al.Analysis and optimization of pulse dynamics for magnetic stimulation[J]. Plos One, 2013, 8(3): e55771. [23] Peterchev A V, Jalinous R, Lisanby S H.A transcranial magnetic stimulator inducing near- rectangular pulses with controllable pulse width(cTMS)[J]. IEEE Transactions on Biomedical Engineering, 2007, 55(1): 257-266. [24] Peterchev A V, Murphy D L, Lisanby S H.Repetitive transcranial magnetic stimulator with controllable pulse parameters[J]. Journal of Neural Engineering, 2011, 8(3): 036016. [25] 于阳, 李玥, 张广浩, 等. 适用于临床及动物试验的高频重复经颅磁刺激系统设计及其应用[J]. 高电压技术, 2013, 39(1): 181-187. Yu Yang, Li Yue, Zhang Guanghao, et al.Design and application of high frequency transcranial magnetic stimulation system for clinical and animal testing[J]. High Voltage Engineering, 2013, 39(1): 181-187. [26] 李江涛, 郑敏军, 曹辉. 经颅磁刺激技术的研究进展[J]. 高电压技术, 2016, 42(4): 1168-1178. Li Jiangtao, Zheng Minjun, Cao Hui.Research progress of transcranial magnetic stimulation techno- logy[J]. High Voltage Engineering, 2016, 42(4): 1168-1178. [27] 丁顺, 邢岩, 王钧, 等. IGBT串联动态均压特性分析与控制[J]. 电工技术学报, 2018, 33(14): 3194-3201. Ding Shun, Xing Yan, Wang Jun, et al.Control for dynamic voltage-sharing among series-connected IGBTs[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3194-3201. [28] 米彦, 储贻道, 蒋春, 等. 基于聚焦线圈和固态开关的脉冲磁场发生器[J]. 仪器仪表学报, 2014, 35(7): 1639-1645. Mi Yan, Chu Yidao, Jiang Chun, et al.Pulse field generator based on focusing coil and solid switch[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1639-1645. [29] Choe H J, Chung Y C, Sung C H, et al.Passive snubber for reducing switching-power losses of an IGBT in a DC-DC Boost converter[J]. IEEE Transa- ctions on Power Electronics, 2014, 29(12): 6332-6341. [30] 李辉, 廖兴林, 肖洪伟, 等. 基于SiC MOSFET直流固态断路器关断初期电压尖峰抑制方法[J]. 电工技术学报, 2018, 33(5): 1058-1067. Li Hui, Liao Xinglin, Xiao Hongwei, et al.Voltage overshoot suppression method of SiC MOSFET- based dc solid-state circuit breaker at turn-off initial stage[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1058-1067.