Two Stage Insulator Fault Detection Method Based on Collaborative Deep Learning
Wang Zhuo1, Wang Yujing1, Wang Qingyan1, Kang Shouqiang1, V. I. Mikulovich2
1. School of Electrical and Electronic Engineering Harbin University of Science and TechnologyHarbin 150080 China; 2. Belarusian State University Minsk 220030 Belorussia
Abstract:For the problem of low accuracy caused by complex background interference in aerial images of existing insulator fault detection models, a two-stage insulator fault detection method based on collaborative deep learning is proposed. The method combines fully convolutional networks (FCN) with YOLOv3 target detection algorithm. The first stage, the FCN algorithm is used to preprocess the aerial image. The jump structure is designed to fuse the shallow image features and deep semantic features, and an 8-fold up-sampling insulator segmentation model is constructed. Combining with the image pixel logic operation, the initial segmentation of insulator target can be realized to avoid the interference of background area on insulator fault detection. On this basis, the second stage, YOLOv3 model is constructed to detect the insulator faults. The deep neural network Darknet-53 is used as the feature extractor, and referring to the idea of feature pyramid, the insulator faults can be marked and classified on three scales of output tensors to ensure the accurate detection of insulator faults of different sizes. K-means++ clustering algorithm is used to optimize the anchor boxes parameters of YOLOv3 to further improve the detection accuracy. The experimental results show that the two-stage method based on collaborative deep learning can effectively overcome the interference of complex background, the mean average precision of insulator fault detection is as high as 96.88%, which is 4.65% higher than the original YOLOv3 algorithm.
王卓, 王玉静, 王庆岩, 康守强, V.I.Mikulovich. 基于协同深度学习的二阶段绝缘子故障检测方法[J]. 电工技术学报, 2021, 36(17): 3594-3604.
Wang Zhuo, Wang Yujing, Wang Qingyan, Kang Shouqiang, V. I. Mikulovich. Two Stage Insulator Fault Detection Method Based on Collaborative Deep Learning. Transactions of China Electrotechnical Society, 2021, 36(17): 3594-3604.
[1] 张倩, 王建平, 李帷韬. 基于反馈机制的卷积神经网络绝缘子状态检测方法[J]. 电工技术学报, 2019, 34(16): 3311-3321. Zhang Qian, Wang Jianping, Li Weitao.Insulator state detection of convolutional neural networks based on feedback mechanism[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3311-3321. [2] 马世伟, 张鑫, 范兴明, 等. 电力绝缘子检测方法及其应用现状[J]. 桂林电子科技大学学报, 2013, 33(6): 456-460. Ma Shiwei, Zhang Xin, Fan Xingming, et al.Detection methods of electrical insulator and its application status[J]. Journal of Guilin University of Electronic Technology, 2013, 33(6): 456-460. [3] 孙曙光, 李勤, 杜太行, 等. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573. Sun Shuguang, Li Qin, Du Taihang, et al.Fault diagnosis of accessories for the low voltage conventional circuit breaker based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2562-2573. [4] 李彩林, 张青华, 陈文贺, 等. 基于深度学习的绝缘子定向识别算法[J]. 电子与信息学报, 2020, 42(4): 1033-1040. Li Cailin, Zhang Qinghua, Chen Wenhe, et al.Insulator orientation detection based on deep learning[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1033-1040. [5] Zhang Xinye, An Jubai, Chen Fangming.A method of insulator fault detection from airborne images[C]// IEEE 2010 Second WRI Global Congress on Intelligent Systems, Wuhan, 2010: 200-203. [6] 朱邵成, 高清维, 卢一相, 等. 基于频率调谐的绝缘子识别与定位[J]. 电工技术学报, 2018, 33(23): 5573-5580. Zhu Shaocheng, Gao Qingwei, Lu Yixiang, et al.Identification and location of insulator string based on frequency-tuned[J]. Transactions of China Electrote-chnical Society, 2018, 33(23): 5573-5580. [7] 张桂南, 刘志刚. 基于角点匹配与谱聚类的接触网绝缘子破损/夹杂异物故障检测[J]. 仪器仪表学报, 2014, 35(6): 1370-1377. Zhang Guinan, Liu Zhigang.Fault detection of catenary insulator damage / foreign material based on corner matching and spectral clustering[J]. Chinese Journal of Scientific Instrument, 2014, 35(6): 1370-1377. [8] 金立军, 曹培, 胡娟. 可见光图像颜色特征与支持向量机相结合的绝缘子污秽状态识别方法[J]. 高压电器, 2015, 51(2): 1-7, 17. Jin Lijun, Cao Pei, Hu Juan.Identification of insulator contamination grade combining color features of visual image with support vector machine[J]. High Voltage Apparatus, 2015, 51(2): 1-7, 17. [9] 姜维, 张重生, 殷绪成. 基于深度学习的场景文字检测综述[J]. 电子学报, 2019, 47(5): 1152-1161. Jiang Wei, Zhang Zhongsheng, Yin Xucheng.Deep learning based scene text detection: a survey[J]. Acta Electronica Sinica, 2019, 47(5): 1152-1161. [10] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305. Zhang Hui, Wang Kunfeng, Wang Feiyue.Advances and perspectives on applications of deep learning in visual object detection[J]. Acta Automatica Sinica, 2019, 47(5): 1289-1305. [11] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. Zhang Shun, Gong Yihong, Wang Jinjun.The development of deep convolution neural network and its application on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482. [12] Girshick R, Donahue J, Darrell T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014: 580-587. [13] Girshick R.Fast R-CNN[C]//IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448. [14] 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239. Luo Huilan, Chen Hongkun.Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239. [15] Ren Shaoqing, He Kaiming, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [16] 林刚, 王波, 彭辉, 等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019, 39(5): 213-218. Lin Gang, Wang Bo, Peng Hui, et al.Multi-target detection and location of transmission line inspection image based on improved Faster-RCNN[J]. Electric Power Automation Equipment, 2019, 39(5): 213-218. [17] Liu Wei, Anguelov D, Erhan D.SSD: single shot multi-box detector[C]//European Conference on Computer Vision, 2016: 21-37. [18] Redmon J, Divvala S, Girshick R, et al.You only look once: unified, real-time object detec-tion[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, 2016: 779-788. [19] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(增刊1): 302-310. Wang Xuhong, Li Hao, Fan Shaosheng, et al.Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. [20] Redmon J, Farhadi A. YOLOv3: an incremental improvement[J/OL]. [2018-04-08]. http://arXiuorg/ abs/1804.02767. [21] 颜宏文, 陈金鑫. 基于改进YOLOv3的绝缘子串定位与状态识别方法[J]. 高电压技术, 2020, 46(2): 423-432. Yan Hongwen, Chen Jinxin.Insulator string positioning and state recognition method based on improved YOLOv3 algorithm[J]. High Voltage Engineering, 2020, 46(2): 423-432. [22] Lin Y, Goyal P, Girshick R, et al.Focal loss for dense object detection[C]//IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999-3007.