Abstract:There exists large-scale numerical computation in electromagnetic field which will turn to parallel computation in practical engineering application. Non-overlapping domain decomposition method (DDM) which is suitable of parallel computation is illustrated first in this paper. The formation of element stiff matrix and the solution of the system of linear equations of finite element method (FEM) are all parallelized based on the non-overlapping DDM. So, it improves the parallel degree further than the traditional solution which only parallelizes the system of linear equations. For more accurate computation the potential distribution and the electric field intensity on the surface of hardware fittings, the 3D FEM model of 500kV high voltage transmission line is built and decomposed into 2~6 sub-domains for parallel computation on cluster of 6 workstations in the laboratory. The speedups reveal that parallel computation is superior of improving computational efficiency. The results can be used as the basis to optimize the rings’ location and reduce the electric field intensity of the insulator string high voltage end.
厉天威, 阮江军, 杜志叶, 黄道春. 并行计算合成绝缘子串电压分布及金具表面电场强度[J]. 电工技术学报, 2010, 25(3): 6-13.
Li Tianwei, Ruan Jiangjun, Du Zhiye, Huang Daochun. Parallel Computation of Voltage Distribution Along Composite Insulator Strings and Electric Field Intensity on the Surface of Hardware Fittings. Transactions of China Electrotechnical Society, 2010, 25(3): 6-13.
[1] 司马文霞, 杨庆, 孙才新, 等. 基于有限元和神经网络方法对超高压合成绝缘子均压环结构优化的研究[J]. 中国电机工程学报, 2005, 25(17): 115-120. [2] 张鸣, 陈勉. 500kV罗北甲线合成绝缘子芯棒脆断原因分析[J]. 电网技术, 2003, 27(12): 51-53. [3] 沈鼎申, 张孝军, 万启发, 等. 750kV线路绝缘子串电压分布的有限元计算[J]. 电网技术, 2003, 27(12): 54-57. [4] 谢德馨, 唐任远, 王尔智, 等. 计算电磁学的现状与发展趋势——第14届COMPUMAG会议综述[J]. 电工技术学报, 2003, 18(5): 1-4. [5] 钟建英, 林莘, 何荣涛. 自能式SF6断路器熄弧性能的并行计算仿真[J]. 中国电机工程学报, 2006, 26(20): 154-159. [6] Butrylo B, Musy F, Nicolas L, et al. A survey of parallel solvers for the finite element method in computational electromagnetics[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2004, 23(2): 531-546. [7] 刘洋, 周家启, 谢开贵, 等. 基于Beowulf 集群的大规模电力系统方程并行PCG 求解[J]. 电工技术学报, 2006, 21(3): 105-111. [8] Watanabe K, Igarashi H. A parallel PCG method with overlapping domain decomposition[C]. 12th Biennial IEEE Conference on Electromagnetic Field Computation, 2006: 49. [9] Ito F, Amemiya N. Application of parallelized SOR method to electromagnetic field analysis of supercon- ductors[J]. IEEE Transactions on Applied Supercon- ductivity, 2004, 14(2): 1874-1877. [10] Vollaire C, Nicolas L. Preconditioning techniques for the conjugate gradient solver on a parallel distributed memory computer[J]. IEEE Transactions on Magnetics, 1998, 34(5): 3347-3350. [11] 吉兴全, 王成山. 电力系统并行计算方法比较研 究[J]. 电网技术, 2003, 27(4):22-26. [12] 吕涛, 石济民, 林振宝, 等. 区域分解算法—偏微分方程数值解新技术[M]. 北京: 科学出版社, 1999. [13] Imre Sebestyén. Electric-field calculation for HV insulators using domain-decomposition method[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1213- 1216. [14] Liu Peng, Jin Yaqiu. The finite-element method with domain decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large-scale rough sea surface[J]. IEEE Transaction on Geoscience and Remote Sensing, 2004, 42(5): 950-956. [15] Liu Y Q, Yuan J S. A finite element domain decomposition combined with algebraic multigrid method for large-scale electromagnetic field compu- tation[J]. IEEE Transactions on Magnetics, 2006, 42(4): 655-658. [16] 都志辉. 高性能计算并行编程技术: MPI并行程序设计[M]. 北京:清华大学出版社, 2001.