Abstract:A new parallel algorithm for unit commitment including AC power flow constraints is proposed. This algorithm employs a new augmented Lagrange relaxation method that involves the variable duplication technique and auxiliary problem principle to convert the primal problem into its dual problem, and obtain the separation structure of the Lagrangian function which can be decoupled into dynamic programming subproblem and optimal power flow (OPF) subproblem. Predictor-corrector interior point method is applied to solve OPF subproblem. Parallel computing is used to accelerate the computational speed. The numerical results on IEEE118 and IEEE300 cases show that the proposed algorithm has good convergence performance, is very suitable for parallel processing.
江全元, 张铭泽, 高强. 考虑交流潮流约束的机组组合并行解法[J]. 电工技术学报, 2009, 24(8): 120-126.
Jiang Quanyuan, Zhang Mingze, Gao Qiang. A Parallel Algorithm for Unit Commitment Including AC Power Flow Constraints. Transactions of China Electrotechnical Society, 2009, 24(8): 120-126.
[1] 陈皓勇, 王锡凡. 机组组合问题的优化方法综述[J].电力系统自动化, 1999, 23(5): 51-56. [2] Quyang Z, Shahidehpour S M. A hybrid artificial neural network-dynamic programming approach to unit commitment[J]. IEEE Trans. on Power Systems, 1992, 7(10): 339-350. [3] Li C, Johnson R B, Svoboda A J. A new unit commitment method[J]. IEEE Transactions on Power Systems, 1997, 12(1): 113-119. [4] 黎静华, 韦化. 基于内点法的机组组合模型[J]. 电网技术, 2007, 31(24): 28-34. [5] Guan X, Luh P B, Yan H, et al. An optimization-based method for unit commitment[J]. Electrical Power & Energy Systems, 1992, 14(1): 9-17. [6] Zhuang F, Galiana F D. Unit commitment by simulated annealing[J]. IEEE Transactions on Power Systems, 1990, 5(1): 311-317. [7] 陈皓勇, 张靠社, 王锡凡. 电力系统机组组合问题的系统进化算法[J]. 中国电机工程学报, 1999, 19 (12): 10-13. [8] Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE International Conference on Neural Networks, 1995, 4: 1942-1948. [9] 刘涌, 侯志俭, 蒋传文. 求解机组组合问题的改进离散粒子群算法[J]. 电力系统自动化, 2006, 30(4): 35-39. [10] Cohen G, Zhu D L. Decomposition-coordination methods in large scale optimization problems: the nondifferentiable case and the use of augmented lagrangians[J]. Advance in Large Scale Systems, 1983, 1(1): 203-266. [11] Wu Y C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows[J]. IEEE Trans- actions on Power Systems, 1994, 9(2): 876-883. [12] Batut J, Renaud A. Daily generation scheduling optimization with transmission constraints: a new class of algorithms[J]. IEEE Transactions on Power Systems, 1992, 7(3): 982-989. [13] Baldick R. The generalized unit commitment problem[J]. IEEE Transactions on Power Systems, 1995, 10(1): 465-475. [14] Zhang X P, Petoussis S G, Godfrey K R. Nonlinear interior-point optimal power flow method based on a current mismatch formulation[J]. Proc. Inst. Elect. Eng., Gen., Transm., Distrib, 2005, 152(6): 795-805. [15] Carlos Edmundo Murillo Sánchez. On the integration of unit commitment and optimal power flow[D]. Ithca: Cornell University, 2000. [16] Cohen G. Auxiliary problem principle and decomposition of optimization problems[J]. Journal of Optimization Theory and Applications, 1980, 32(3): 277-305. [17] 商小乐, 李建华, 刘锐, 等. 基于辅助问题原理及内点法的分区并行最优潮流算法[J]. 西安交通大学学报, 2006, 40(4): 468-472.