Parallel Ensemble Empirical Mode Decomposition and Its Application in Feature Extraction of Partial Discharge Signals
Zhu Yongli1, Wang Liuwang2
1. School of Control and Computer Engineering North China Electric Power University Baoding 071003 China;
2. Electric Power Research Institute of State Grid Zhejiang Electric Power Company Hangzhou 310014 China
Waveform signals are common data in the condition monitoring of electrical power apparatuses, their processing becomes a data-intensive and computing-intensive problem in the background of big data. Ensemble empirical mode decomposition(EEMD) algorithm, which is adaptive, has advantages in analyzing nonlinear, non-stationary signals, butits application is limited by the high computational complexity. Based on the parallelismanalysis of EEMD, two different structure of parallel EEMD algorithm, namely epoch parallel and trial parallel, are designed and implemented on Spark platform. Epoch parallel EEMD, which segments waveform and processes fragments in parallel, is applicable to long waveform, but its results have some errors. Trial parallel EEMD, which parallelizes the empirical mode decomposition(EMD)trials, can get the same resultswith the original algorithm, but its memory requirement is relatively larger, so it is suitable for the waveform signals with little data volume.The proposed parallel EEMD algorithms are used to extract features fromPD waveform signals, and energy parameter and sample entropy of the IMFs are calculated asfeatures. Experimental results show that the features can be used to recognizetypes of partial discharge. The proposed parallel EEMD algorithms are more efficient than the existing EEMD, which saves the time of feature extraction process.
朱永利, 王刘旺. 并行EEMD算法及其在局部放电信号特征提取中的应用[J]. 电工技术学报, 2018, 33(11): 2508-2519.
Zhu Yongli, Wang Liuwang. Parallel Ensemble Empirical Mode Decomposition and Its Application in Feature Extraction of Partial Discharge Signals. Transactions of China Electrotechnical Society, 2018, 33(11): 2508-2519.
[1] Chen Qiuhui, Huang N, Riemenschneider S, et al.A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1): 171-195.
[2] 胡劲松, 杨世锡. 基于有效数据的经验模态分解快速算法研究[J]. 振动、测试与诊断, 2006, 26(2): 119-121.
Hu Jinsong, Yang Shixi.Study on valid-data-based EMD fast algorithm[J]. Journal of Vibration, Measurement & Diagnosis, 2006, 26(2): 119-121.
[3] Qin Yi, Qin Shuren, Mao Yongfang.Fast implementation of orthogonal empirical mode decomposition and its applica-tion into harmonic detection[J]. Chinese Journal of Mechanical Engineering, 2008, 21(2): 93-98.
[4] Guo Wei, Tse P W.A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals[J]. Journal of Sound and Vibration, 2013, 332(2): 423-441.
[5] Chen Dan, Li Duan, Xiong Muzhou, et al.GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia[J]. IEEE Transactions on Information Technology In Biomedicine, 2010, 14(6): 1417-1427.
[6] Wang Y, Ren H, Huang M, et al.GPU-based ensemble empirical mode decomposition approach to spectrum discrimination[C]//Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, China, 2012:1-4.
[7] 朱永利, 李莉, 宋亚奇, 等. ODPS平台下的电力设备监测大数据存储与并行处理方法[J]. 电工技术学报, 2017, 32(9): 199-210.
Zhu Yongli, LiLi, Song Yaqi, et al. Storage and parallel processing of big data of power equipment condition monitoring on ODPS platform[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 199-210.
[8] Wang Lizhe, Chen Dan, Ranjan R, et al.Parallel processing of massive EEG data with MapReduce[C]//IEEE International Conference on Parallel and Distributed Systems, Singapore, 2012: 164-171.
[9] 宋亚奇, 周国亮, 朱永利, 等. 云平台下并行总体经验模态分解局部放电信号去噪方法[J]. 电工技术学报, 2015, 30(18): 213-222.
Song Yaqi, Zhou Guoliang, Zhu Yongli, et al.Research on parallel ensemble empirical mode decomposition denoising method for partial discharge signals based on cloud platform[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 213-222.
[10] 李明, 李天瑞, 陈志, 等. 基于Spark计算框架的高铁振动数据经验模态分解[J]. 计算机工程与应用, 2016, 52(20): 103-107, 176.
Li Ming, Li Tianrui, Chen Zhi, et al.Empirical mode decomposition of high-speed rail data based on Spark computing framework[J]. Computer Engineering and Applications, 2016, 52(20): 103-107, 176.
[11] Huang N E, Shen Zheng, Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[12] Wu Zhaohua, Huang N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[13] Zaharia M, Chowdhury M, Das T, et al.Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing[C]// Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, San Jose, CA, USA, 2012: 141-146.
[14] 孟建良, 刘德超. 一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J]. 电力系统保护与控制, 2016, 44(3): 85-91.
Meng Jianliang, Liu Dechao.A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control, 2016, 44(3): 85-91.
[15] 陈伟根, 龙震泽, 谢波, 等. 不同气隙尺寸的油纸绝缘气隙放电特征及发展阶段识别[J]. 电工技术学报, 2016, 31(10): 49-58.
Chen Weigen, Long Zhenze, Xie Bo, et al.Characteristics and development stage recognition of air-gap discharge within oil-paper insulation considering effect of cavity size[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 49-58.
[16] 季洪鑫, 李成榕, 马国明, 等. 冲击电压下气体绝缘开关设备悬浮缺陷放电特征[J]. 电工技术学报, 2017, 32(6): 256-264.
JiHongxin, Li Chengrong, Ma Guoming, et al. Characteristic analysis of gas insulated switchgear suspension defect under impulse voltage[J]. Transactionsof China Electrotechnical Society, 2017, 32(6): 256-264.
[17] 朱永利, 贾亚飞, 王刘旺, 等. 基于改进变分模态分解和Hilbert变换的变压器局部放电信号特征提取及分类[J]. 电工技术学报, 2017, 32(9): 221-235.
Zhu Yongli, JiaYafei, Wang Liuwang, et al. Feature extraction and classification on partial discharge signals of power transformers based on improved variational mode decomposition and Hilbert transform[J]. Transactions of China Electrotechnical Society, 2017, 32(9):221-235.
[18] 贾亚飞, 朱永利, 王刘旺, 等. 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报, 2016, 31(19): 208-217.
Jia Yafei, Zhu Yongli, Wang Liuwang, et al.Feature extraction and classification on partial discharge signals of power transformers based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 208-217.
[19] 唐炬, 樊雷, 张晓星, 等. 用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J]. 电工技术学报, 2015, 30(3): 250-257.
Tang Ju, Fan Lei, Zhang Xiaoxing, et al.Multi-scale feature parameters extraction of GIS partial discharge signal with harmonic wavelet packet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 250-257.
[20] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20-30.
Sun Shuguang, Yu Han, Du Taihang, et al.Diagnosis on the switching fault of conventional circuit breaker based on vibration signal sample entropy and RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20-30.
[21] 孙曙光, 于晗, 杜太行, 等. 基于多特征融合与改进QPSO-RVM的万能式断路器故障振声诊断方法[J]. 电工技术学报, 2017, 32(19): 107-117.
Sun Shuguang, Yu Han, Du Taihang, et al.Vibration and acoustic joint fault diagnosis of conventional circuit breaker based on multi-feature fusion and improved QPSO-RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 107-117.
[22] Pincus S.Assessing serial irregularity and its implications for health[J]. Annals of the New York Academy of Sciences, 2001, 954(1): 245-267.
[23] 王刘旺, 朱永利, 贾亚飞,等. 局部放电大数据的并行PRPD分析与模式识别[J]. 中国电机工程学报, 2016, 36(5): 1236-1244.
Wang Liuwang, Zhu Yongli, Jia Yafei, et al.Parallel phase resolved partial discharge analysis for pattern recognition on massive PD data[J]. Proceedings of the CSEE, 2016, 36(5): 1236-1244.