The Propagation Characteristics of Surface Ionization Wave in Surface Dielectric Barrier Discharge Sustained by the Nanosecond Pulse Voltage
Ye Chengyuan1,2, Huang Bangdou2, Zhang Cheng2,3, Chen Genyong1, Shao Tao2,3
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China; 2. Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 3. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:Surface dielectric barrier discharge (SDBD) actuator is widely used in plasma flow control. The surface ionization wave (SIW) propagation is one of the important parameters for optimizing the control effect of the actuator. In this paper, using PTFE and epoxy resin (ER) as dielectric materials, surface dielectric barrier discharge actuator with multi-GND electrode array structure was fabricated. The propagation characteristics of surface ionization wave in the surface dielectric barrier discharge were studied experimentally using nanosecond high voltage pulse power supply. The experimental results show that at the rising edge of the pulse voltage, two breakdowns occur, forming a discharge channel, namely the primary ionization wave and the secondary ionization respectively. There are two peaks on the current curve, the first peak indicates the primary ionization wave, and the second peak indicates the secondly ionization wave. The charge distribution and evolution are obtained by integrating the current curves at different positions. It is found that the charge electrode dissipates faster near the high voltage, while electrode dissipates more slowly when the charge far away from the high voltage. Moreover, the charge residual of PTFE medium is obvious after discharge, but that of ER medium is not obvious. In addition, the effects of applied voltage amplitude and repetition frequency on SIW propagation characteristics were studied. With a constant voltage amplitude (14kV), the repetition frequency has little influence on the propagation speed of SIW in the range of 100~1 000Hz, but the decay speed of SIW is faster with the increase of the repetition. With a constant repetition frequency (500Hz), when the voltage amplitude changes from 8kV to 17kV, it is found that the voltage amplitude has little influence on the decay of SIW, but the propagation speed of SIW increases with the increase of the voltage amplitude. The results are helpful to the optimize the discharge parameters of SDBD actuator.
[1] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [2] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [3] Gao Yuan, Zhang Shuai, Sun Hao, et al.Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges[J]. Applied Energy, 2018, 226: 534-545. [4] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. Li Heping, Yu Daren, Sun Wenting, et al.Stateof-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. [5] 聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展[J]. 高电压技术, 2017, 43(6): 1749-1758. Nie Wansheng, Zhou Siyin, Che Xueke.Review of plasma assisted combustion technology by nanosecond pulsed discharge[J]. High Voltage Engineering, 2017, 43(6): 1749-1758. [6] 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 5371-5380. Shi Yaowei, Zhou Ruoyu, Cui Xinglei, et al.Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5371-5380. [7] 邵涛, 严萍, 张适昌, 等. 纳秒脉冲气体放电机理探讨[J]. 强激光与粒子束, 2008, 20(11): 1928-1932. Shao Tao, Yan Ping, Zhang Shichang, et al.Review on nanosecond-pulse discharge mechanism in gases[J]. High Power Laser and Particle Beams, 2008, 20(11): 1928-1932. [8] Xie Qing, Gan Wenyan, Zhang Cheng, et al.Effect of rise time on nanosecond pulsed surface dielectric barrier discharge actuator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 346-352. [9] Kotsonis M.Diagnostics for characterisation of plasma actuators[J]. Measurement Science and Technology, 2015, 26(9): 092001. [10] Lagarkov A N, Rutkevich I M.Ionization waves in electrical breakdown of gases[M]. New York: SpringerVerlag, 1994. [11] Chng T L, Orel I S, Starikovskaia S M, et al.Electric field induced second harmonic (E-FISH) generation for characterization of fast ionization wave discharges at moderate and low pressures[J]. Plasma Sources Science & Technology, 2019, 28(4): 045004. [12] Simeni M S, Yong Tang, Frederickson K, et al.Electric field distribution in a surface plasma flow actuator powered by ns discharge pulse trains[J]. Plasma Sources Science & Technology, 2018, 27(10): 104001. [13] 甘汶艳, 章程, 车学科, 等. 激励器参数对纳秒脉冲表面滑闪放电特性影响[J]. 中国电机工程学报, 2019, 39(8): 2489-2497. Gan Wenyan, Zhang Cheng, Che Xueke, et al.Effect of actuator parameters on slide discharge characteristics driven by nanosecond pulse[J]. Proceedings of the CSEE, 2019, 39(8): 2489-2497. [14] Petrishchev V, Leonov S, Adamovich I V.Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces[J]. Plasma Sources Science and Technology, 2014, 23(6): 065022. [15] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al.Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [16] Shao Tao, Sun Guangsheng, Yan Ping, et al.Experimental study of similarity laws in gas breakdown with repetitive nanosecond pulses[J]. Japanese Journal of Applied Physics, 2007, 46(2): 803-805. [17] 张波, 汪立峰, 刘峰, 等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报, 2019, 34(6): 1319-1328. Zhang Bo, Wang Lifeng, Liu Feng, et al.Comparison on discharge characteristics of the helium plasma jet array excited by alternating current and nanosecond pulse voltage[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1319-1328. [18] Stepanyan S A, Soloviev V R, Starikovskaia S M.An electric field in nanosecond surface dielectric barrier discharge at different polarities of the high voltage pulse: spectroscopy measurements and numerical modeling[J]. Journal of Physics D Applied Physics, 2014, 47(48): 485201. [19] 马翊洋, 章程, 孔飞, 等. 次大气压介质阻挡放电处理环氧树脂对表面电荷消散的影响及老化特性[J]. 电工技术学报, 2018, 33(22): 28-37. Ma Yiyang, Zhang Cheng, Kong Fei, et al.Surface treatment of epoxy resin by sub-atmospheric-pressure dielectric barrier discharge: the effect on surface charge dissipation and aging characteristics[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 28-37. [20] Shao Tao, Jiang Hui, Zhang Cheng, et al.Time behaviour of discharge current in case of nanosecondpulse surface dielectric barrier discharge[J]. Europhysics Letters, 2013, 101(4): 45002. [21] 张开放, 张黎, 李宗蔚, 等. 高频正弦电应力下气-固绝缘沿面放电现象及特征分析[J]. 电工技术学报, 2019, 34(15): 3275-3284. Zhang Kaifang, Zhang Li, Li Zongwei, et al.Analysis of the phenomena and characteristics of gas-solid insulation surface discharge under high frequency sinusoidal electrical stress[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3275-3284. [22] Opaits D F, Shneider M N, Miles R B, et al.Surface charge in dielectric barrier discharge plasma actuators[J]. Physics of Plasmas, 2008, 15(7): 073505. [23] Asinovsky E I, Lagarkov A N, Markovets V V, et al.On the similarity of electric breakdown waves propagating in shielded discharge tubes[J]. Plasma Sources Science and Technology, 1994, 3(4): 556-563. [24] Huang Bangdou, Takashima K, Zhu Ximing, et al.The breakdown process in an atmospheric pressure nanosecond parallel-plate helium/argon mixture discharge[J]. Journal of Physics D: Applied Physics, 2016, 49(4): 045202. [25] Raizer Y.Gas discharge physics[M]. 2nd ed. Berlin: Springer, 1997. [26] Huang Bangdou, Takashima K, Zhu Ximing, et al.The influence of the voltage rise rate on the breakdown of an atmospheric pressure helium nanosecond parallel-plate discharge[J]. Journal of Physics D: Applied Physics, 2015, 48(12): 125202. [27] Huang Bangdou, Takashima K, Zhu Ximing, et al.The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges[J]. Journal of Physics D: Applied Physics, 2014, 47(42): 422003. [28] Huang Bangdou, Carbone E, Takashima K, et al.The effect of the pulse repetition rate on the fast ionization wave discharge[J]. Journal of Physics D: Applied Physics, 2018, 51(22): 225202.