A Capacity Planning Model of Advanced Adiabatic Compressed Air Energy Storage Plant Considering Lifetime Varying Characteristic
Yin Binxin1, Miao Shihong1, Li Yaowang1, Luo Xing2, Wang Jihong1,2
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Hubei Electric Power Security and High Efficiency Key Laboratory School of Electrical and Electronic EngineeringHuazhong University of Science and Technology Wuhan 430074 China; 2. School of Engineering Warwick University Coventry CV4 8UW UK
Abstract:Advanced adiabatic compressed air energy storage (AA-CAES) has broad prospects with the advantages of large capacity, low cost, no demand of fuel. The lifetime of AA-CAES plant varies with the way it is used, and is an important factor affecting the planning optimization results, so it's significant to study the lifetime varying characteristics of AA-CAES plant. This paper established an optimization planning model of AA-CAES plant applied to power grid operation and wind power accommodation with lifetime varying characteristic considered. At the planning level of the model, how the operation conditions and expected frequency of reserve impact on the AA-CAES plant's lifetime was considered, and its impact on the average daily investment cost was studied. At the typical-day scheduling level, the reserve characteristics of AA-CAES plant was considered, as well as the operation constraints of AA-CAES plant in complex operation conditions, such as start-stop, power adjustment and working condition conversion, and the dispatching strategy for grid with AA-CAES plants was studied. Finally, the validity of the model was verified by numerical simulation based on typical daily data of a certain area.
尹斌鑫, 苗世洪, 李姚旺, 罗星, 王吉红. 考虑变寿命特性的先进绝热压缩空气储能电站容量规划模型[J]. 电工技术学报, 2020, 35(3): 612-622.
Yin Binxin, Miao Shihong, Li Yaowang, Luo Xing, Wang Jihong. A Capacity Planning Model of Advanced Adiabatic Compressed Air Energy Storage Plant Considering Lifetime Varying Characteristic. Transactions of China Electrotechnical Society, 2020, 35(3): 612-622.
[1] 郭鹏, 文晶, 朱丹丹, 等. 基于源-荷互动的大规模风电消纳协调控制策略[J]. 电工技术学报, 2017, 32(3): 1-9. Guo Peng, Wen Jing, Zhu Dandan, et al.The coordination control strategy for large-scale wind power consumption based on source-load interactive[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 1-9. [2] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085. [3] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. Sun Xin, Fang Chen, Shen Feng, et al.An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 204-211. [4] 韩璐, 李凤婷, 王春艳, 等. 风电接入对继电保护的影响综述[J]. 电力系统保护与控制, 2016, 44(16): 163-169. Han Lu, Li Fengting, Wang Chunyan, et al.A survey on impact of wind farm integration on relay protection[J]. Power System Protection and Control, 2016, 44(16): 163-169. [5] 梅生伟, 李瑞, 陈来军, 等. 先进绝热压缩空气储能技术研究进展及展望[J]. 中国电机工程学报, 2018, 38(10): 2893-2907. Mei Shengwei, Li Rui, Chen Laijun, et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J]. Proceeding of the CSEE, 2018, 38(10): 2893-2907. [6] Wang Jidai, Lu Kunpeng, Ma Lan, et al.Overview of compressed air energy storage and technology development[J]. Energies, 2017, 10(7): 991. [7] Cavallo A.Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)[J]. Energy, 2007, 32(2): 120-127. [8] Swider D J.Compressed air energy storage in an electricity system with significant wind power generation[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 95-102. [9] Fertig E, Apt J.Economics of compressed air energy storage to integrate wind power: a case study in ERCOT[J]. Energy Policy, 2011, 39(5): 2330-2342. [10] 谭靖, 李国杰, 唐志伟. 基于压缩空气储能的风电场功率调节及效益分析[J]. 电力系统自动化, 2011, 35(8): 33-37. Tan Jing, Li Guojie, Tang Zhiwei.Design and economic analysis of compressed air energy storage based wind farm power regulation system[J]. Automation of Electric Power Systems, 2011, 35(8): 33-37. [11] Safaei H, Keith D W, Hugo R J.Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization[J]. Applied Energy, 2013, 103(1): 165-179. [12] Zafirakis D, Kaldellis J K.Autonomous dual-mode CAES systems for maximum wind energy contribution in remote island networks[J]. Energy Conversion & Management, 2010, 51(11): 2150-2161. [13] 张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40. Zhang Xinjing, Chen Haisheng, Liu Jinchao, et al.Research progress in compressed air energy storage system: a review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40. [14] 张俊. 含有压缩空气储能的微网规划与运行控制研究[D]. 济南: 山东大学, 2016. [15] Wang Sixian, Zhang Xuelin, Yang Luwei, et al.Experimental study of compressed air energy storage system with thermal energy storage[J]. Energy, 2016, 103: 182-191. [16] 王建男. 离心压缩机叶轮全寿命疲劳分析与安定性分析[D]. 大连: 大连理工大学, 2016. [17] 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002. [18] 刘惟信. 机械可靠性设计[M]. 北京: 清华大学出版社, 2000. [19] 娄素华, 崔继纯. 考虑动态功能的抽水蓄能电站综合规划模型[J]. 电力系统自动化, 2009, 33(1): 27-31. Lou Suhua, Cui Jichun.An integrated planning model of pumped-storage station considering dynamic functions[J]. Automation of Electric Power Systems, 2009, 33(1): 27-31. [20] 徐滨士. 再制造与循环经济[M]. 北京: 科学出版社, 2007. [21] 李姚旺, 苗世洪, 尹斌鑫, 等. 考虑先进绝热压缩空气储能电站备用特性的电力系统优化调度策略[J].中国电机工程学报, 2018, 28(18): 5392-5404. Li Yaowang, Miao Shihong, Yin Binxin, et al.Power system optimal scheduling strategy considering reserve characteristics of advanced adiabatic compressed air energy storage plant[J]. Proceedings of the CSEE, 2018, 28(18): 5392-5404. [22] 李姚旺, 苗世洪, 尹斌鑫, 等. 含先进绝热压缩空气储能电站的电力系统实时调度模型[J]. 电工技术学报, 2019, 34(2): 387-397. Li Yaowang, Miao Shihong, Yin Binxin, et al.Real-time dispatch model for power system with advanced adiabatic compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 387-397. [23] Raju M, Khaitan S K.Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant[J]. Applied Energy, 2012, 89(1): 474-481. [24] Beaudin M, Zareipour H, Schellenberglabe A, et al.Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development, 2010, 14(4): 302-314. [25] 罗纯坚, 李姚旺, 许汉平, 等. 需求响应不确定性对日前优化调度的影响分析[J]. 电力系统自动化, 2017, 41(5): 22-29. Luo Chunjian, Li Yaowang, Xu Hanping, et al.Influence of demand response uncertainty on day-ahead optimization dispatching[J]. Automation of Electric Power Systems,2017, 41(5): 22-29. [26] 郑静, 文福拴, 李力, 等. 计及风电场和储能系统联合运行的输电系统扩展规划[J]. 电力系统自动化, 2013, 37(1): 135-142. Zheng Jing, Wen Fushuan, Li Li, et al.Transmission system expansion planning considering combined operation of wind farms and energy storage systems[J]. Automation of Electric Power Systems, 2013, 37(1): 135-142. [27] 孙建军, 张世泽, 曾梦迪, 等. 考虑分时电价的主动配电网柔性负荷多目标优化控制[J]. 电工技术学报, 2018, 33(2): 401-412. Sun Jianjun, Zhang Shize, Zeng Mengdi, et al.Multi-objective optimal control for flexible load in active distribution network considering time-of-use tariff[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 401-412.