Coordinated Optimal Control with Loss Minimization for Active and Reactive Power of Doubly Fed Induction Generator-Based Wind Farm
Rong Fei1, Li Peiyao1, Zhou Shijia2
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. China Southern Power Grid Research Institute Guangzhou 510700 China
Abstract:Based on the optimal power flow (OPF) model, an optimal active and reactive power coordination control strategy for doubly fed induction generator (DFIG) based wind farms (WFs) is proposed to minimize the total loss of the WF, dispatch active and reactive power inside the DFIG WFs and realize active power download operation. The losses inside a DFIG include the generator copper loss and the losses of converters, which can be reduced by optimally dividing the reactive power between the stator and the grid side converter. Combining the DFIG reactive power dividing strategy, the coordinated control for active and reactive power of the DFIG-based WFs is constructed into an OPF problem based on the linearized DistFlow model. The proposed strategy can minimize the total losses inside the DFIG-based WFs so as to reduce cumulative fatigue effect of the power devices such as converters. The results of the simulation built in Matlab/Simulink show that the proposed strategy can reduce the total losses of the DFIG-based WFs with the premise of tracking active power demands and dispatching reactive power inside the DFIG wind turbine (WT).
荣飞, 李培瑶, 周诗嘉. 双馈风电场损耗最小化的有功无功协调优化控制[J]. 电工技术学报, 2020, 35(3): 520-529.
Rong Fei, Li Peiyao, Zhou Shijia. Coordinated Optimal Control with Loss Minimization for Active and Reactive Power of Doubly Fed Induction Generator-Based Wind Farm. Transactions of China Electrotechnical Society, 2020, 35(3): 520-529.
[1] Demailly F, Ninet O, Even A.Numerical tools and models for Monte Carlo studies of the influence on embedded generation on voltage limits in LV grids[J]. IEEE Transactions on Power Delivery, 2005, 20(3): 2343-2350. [2] 国家电网公司. Q/GDW 432—2010 风电调度运行管理规范[S]. 北京: 中国电力出版社, 2010. [3] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. LuoYi, Shao Zhouce, Zhang Lei, et al. Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467. [4] 马少康, 耿华, 马进, 等. 双馈型风电场详细模型建模方法[J]. 电工技术学报, 2017, 32(增刊1): 1-10. Ma Shaokang, Geng Hua, Ma Jin, et al.An approach to establish detailed model of DFIG based wind farm[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 1-10. [5] 刘瑞芳, 任雪娇, 陈嘉垚. 双馈异步风力发电机的轴电流分析[J]. 电工技术学报, 2018, 33(19): 4517-4525. Liu Ruifang, Ren Xuejiao, Chen Jiayao.Analysis of bearing currents in doubly-fed induction wind turbines[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4517-4525. [6] 唐程辉, 张凡, 张宁, 等. 基于风电场总功率条件分布的电力系统经济调度二次规划方法[J]. 电工技术学报, 2019, 34(10): 2069-2078. Tang Chenghui, Zhang Fan, Zhang Ning, et al.Quadratic programming for power system economic dispatch based on the conditional probability distribution of wind farms sum power[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2069-2078. [7] 叶林, 任成, 李智, 等. 风电场有功功率多目标分层递阶预测控制策略[J]. 中国电机工程学报, 2016, 36(23): 6327-6336, 6597. Ye Lin, Ren Cheng, Li Zhi, et al.Stratified progressive predictive control strategy for multi-objective dispatching active power in wind farm[J]. Proceedings of the CSEE, 2016, 36(23): 6327-6336, 6597. [8] 苏永新, 段斌, 朱广辉, 等. 海上风电场疲劳分布与有功功率统一控制[J].电工技术学报, 2015, 30(22): 190-198. Su Yongxin, Duan Bin, Zhu Guanghui, et al.Fatigue Distribution and active power combined control in offshore wind farm[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 190-198. [9] Huang Sheng, Wu Qiuwei, Guo Yifei, et al.Bi-level decentralised active power control for large-scale wind farm cluster[J]. IET Renewable Power Generation, 2018, 12(13): 1486-1492. [10] Spudić V, Conte C, Baotić M, et al.Cooperative distributed model predictive control for wind farms[J]. Optimal Control Applications & Methods, 2015, 36(3): 333-352. [11] Zhao Haoran, Wu Qiuwei, Guo Qinglai, et al.Distributed model predictive control of a wind farm for optimal active power control-part II: implementation with clustering-based piece-wise affine wind turbine model[J]. IEEE Transactions Sustainable Energy, 2015, 6(3): 1-10 [12] 刘军, 张彬彬, 赵婷. 基于模糊评价的风电场有功功率分配算法[J]. 电工技术学报, 2019, 34(4): 786-794. Liu Jun, Zhang Binbin, Zhao Ting.Research on wind farm active power dispatching algorithm based on fuzzy evaluation[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 786-794. [13] Xu Dianguo, Li Rui, Liu Yicheng, et al.Reactive power analysis and control of doubly fed induction generator wind farm[C]//2009 13th European Conference on Power Electronics and Applications, Barcelona, 2009: 1-10. [14] 郎永强, 张学广, 徐殿国, 等. 双馈电机风电场无功功率分析及控制策略[J]. 中国电机工程学报, 2007, 27(9): 77-82. Lang Yongqiang, Zhang Xueguang, Xu Dianguo, et al.Reactive power analysis and control of doubly fed induction generator wind farm[J]. Proceedings of the CSEE, 2007, 27(9): 77-82. [15] 严干贵, 孙兆键, 穆钢, 等. 面向集电系统电压调节的风电场无功电压控制策略[J]. 电工技术学报, 2015, 30(18): 140-146. Yan Gangui, Sun Zhaojian, Mu Gang, et al.Collector system voltage regulation oriented reactive power control strategy for wind farm[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 140-146. [16] Kanna B, Singh S N.Towards reactive power dispatch within a wind farm using hybrid PSO[J]. International Journal of Electrical Power & Energy Systems, 2015, 69: 232-240. [17] 刘云峰. 含双馈感应风机的配电网无功优化研究[D]. 郑州: 郑州大学, 2018. [18] Guo Yifei, Gao Houlei, Wu Qiuwei, et al.Coordinated voltage control scheme for VSC-HVDC connected wind power plants[J]. IET Renewable Power Generation, 2018, 12(2): 198-206. [19] Guo Yifei, Gao Houlei, Wu Qiuwei.Distributed cooperative voltage control of wind farms based on consensus protocol[J]. International Journal of Electrical Power & Energy Systems, 2019, 104: 593-602. [20] Petersson A.Analysis, modeling and control of doubly-fed induction generators for wind turbines[D]. Chalmers: Chalmers University of Technology, 2005. [21] Johan L.Modeling and solving uncertain optimization problem in YALMIP[C]// The International Federation of Automation Control, Korea, 2008: 1337-1341.