Calculation and Analysis of Ground-Level Total Electric Field under ±500kV HVDC Lines Considering the Influence of Metal Return Lines
Hao Liming1, Wang Donglai1, Lu Tiebing1, Chen Bo1, Wang Zhenguo2
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Research Institute of State Grid Zhejiang Electric Power Company Hangzhou 310014 China
Abstract:The structure of overhead metal return lines is adopted in the ±500kV voltage source converter (VSC) -based direct current grid demonstration project in Zhangbei. In this paper, the influence of metal return lines on the ground-level total electric field of ±500kV lines was studied for the first time by the upstream finite element method. A calculation method for the floating potential in total electric field was proposed to consider the operating condition that one pole is floating. The effectiveness of calculation method was verified by establishing a reduce-scale experimental platform in the lab. The shielding characteristics of metal return lines on ground-level electric field were analyzed under single circuit bipolar lines, single circuit unipolar operating lines and double circuit lines on the same tower. In order to improve the shielding effect of single circuit lines, the projection of return lines to the ground should be near the peak value of total electric field without return lines. Compared with single circuit lines, the shielding effect of double circuit lines is significantly improved because of the increasing number and large space of return lines.
郝黎明, 王东来, 卢铁兵, 陈博, 王振国. 计及金属回流线影响的±500kV高压直流输电线路地面合成电场计算分析[J]. 电工技术学报, 2019, 34(12): 2468-2476.
Hao Liming, Wang Donglai, Lu Tiebing, Chen Bo, Wang Zhenguo. Calculation and Analysis of Ground-Level Total Electric Field under ±500kV HVDC Lines Considering the Influence of Metal Return Lines. Transactions of China Electrotechnical Society, 2019, 34(12): 2468-2476.
[1] Maruvada P S.On the generation functions of DC corona performance[J]. IEEE Transactions on Power Delivery, 2017, 32(4): 2122-2129. [2] Arruda C, Lima A.Corona modeling in HVDC transmission lines based on a modified particle- in-cell approach[J]. Electric Power Systems Research, 2015, 125: 91-99. [3] Maruvada P S.Influence of ambient electric field on the corona performance of HVDC transmission lines[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 691-698. [4] Pfeiffer M, Schultz T, Sören H, et al.Explaining the impact of conductor surface type on wet weather HVDC corona characteristics[J]. Journal of Electro- statics, 2016, 79: 45-55. [5] 胡琴, 何高辉, 彭华东, 等. 高湿条件下基于凝露分布模型的导线电晕起始电压预测[J]. 电工技术学报, 2018, 33(7): 1634-1640. Hu Qin, He Gaohui, Peng Huadong, et al.Prediction of conductor corona onset voltage based on condensation-distribution model under high humidity conditions[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1634-1640. [6] 杨帆, 代锋, 罗汉武, 等. 雾霾天气下的直流输电线路离子流场分布特性及其影响因素[J]. 电工技术学报, 2016, 31(12): 49-57. Yang Fan, Dai Feng, Luo Hanwu, et al.The distribution characteristics and factor influence of the ionized field of DC transmission lines under haze weather[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 49-57. [7] 王东来, 卢铁兵, 崔翔, 等. 两回高压直流输电线路交叉跨越时地面合成电场计算[J]. 电工技术学报, 2017, 32(2): 77-84. Wang Donglai, Lu Tiebing, Cui Xiang, et al.Simulation of total electric field under the crossing of two circuit HVDC transmission lines[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(2): 77-84. [8] 乔骥, 徐志威, 邹军, 等. 一种消除Deutsch假设的高精度迭代特征线方法求解高压直流输电线路离子流场[J]. 电工技术学报, 2018, 33(19): 4419-4425. Qiao Ji, Xu Zhiwei, Zou Jun, et al.A high-accuracy iterative method of characteristics without Deutsch assumption for calculating ion-flow field of HVDC overhead lines[J]. Transactions of China Electro- technical Society, 2018, 33(19): 4419-4425. [9] Lu Tiebing, Feng Han, Cui Xiang, et al.Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method[J]. IEEE Transactions on Magnetics, 2010, 46(8): 2939-2942. [10] Park Y, Jha R K, Park C, et al.Fully coupled finite element analysis for ion flow field under HVDC transmission lines employing field enhancement factor[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 2856-2863. [11] Liu P, Dinavahi V.Finite-difference relaxation for parallel computation of ionized field of HVDC lines[J]. IEEE Transactions on Power Delivery, 2018, 33(1): 119-129. [12] 乔骥, 葛小宁, 邹军. 采用通量线-有限元混合方法求解有风条件下直流输电线路离子流场[J]. 电工技术学报, 2019, 34(5): 910-916. Qiao Ji, Ge Xiaoning, Zou Jun.A flux tracing-finite element hybrid method for calculating ion-flow field of HVDC overhead lines in presence of wind[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 910-916. [13] 郭贤珊, 周杨, 梅念, 等. 张北柔直电网的构建与特性分析[J]. 电网技术, 2018, 42(11): 3698-3707. Guo Xianshan, Zhou Yang, Mei Nian, et al.Con- struction and characteristic analysis of Zhangbei flexible DC grid[J]. Power System Technology, 2018, 42(11): 3698-3707. [14] 国家能源局. DL/T 5224—2014高压直流输电大地返回系统设计技术规范[S]. 北京: 中国计划出版社, 2014. [15] 国家能源局. DL 5497—2015 高压直流架空输电线路设计技术规程[S]. 北京: 中国计划出版社, 2015. [16] 严璋, 文川, 秦柏林. 架空地线对单极直流输电线路下离子流分布影响的研究[J]. 高电压技术, 1987(2): 12-15. Yan Zhang, Wen Chuan, Qin Bolin.Study of the effect of overhead ground wire on ion currents under unipolar HVDC line[J]. High Voltage Engineering, 1987(2): 12-15. [17] 黄国栋, 阮江军, 杜志叶, 等. 架空地线对同塔双回高压直流输电线路离子流场的影响[J]. 高电压技术, 2011, 37(12): 2965-2970. Huang Guodong, Ruan Jiangjun, Du Zhiye, et al.Effect of the overhead ground wire on the ion current field under double-circuit HVDC transmission lines on the same tower[J]. High Voltage Engineering, 2011, 37(12): 2965-2970. [18] Amano Y, Sunaga Y.Study on reduction in electric field, charged voltage, ion current and ion density under HVDC transmission lines by parallel shield wires[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1351-1359. [19] Tian Feng, Yu Zhanqing, Zeng Rong, et al.Resultant electric field reduction with shielding wires under bipolar HVDC transmission lines[J]. IEEE Transa- ctions on Magnetics, 2014, 50(2): 221-224. [20] 乔骥, 邹军, 鄂天龙, 等. 有屏蔽线时特高压直流输电线路地面电场与离子流场计算与分析[J]. 电 网技术, 2017, 41(7): 2386-2392. 21 Qiao Ji, Zou Jun, E Tianlong, et al. Calculation of ground-level electric field and ion flow of HVDC transmission lines with shield wires[J]. Power System Technology, 2017, 41(7): 2386-2392. [21] 杨勇. ±800kV直流线路负极悬空时的地面合成电场计算和分析[J]. 电网技术, 2013, 37(6): 1531-1535. Yang Yong.Calculation and analysis of total electric field at ground level beneath ±800kV DC trans- mission lines with out-of-operational negative pole line[J]. Power System Technology, 2013, 37(6): 1531-1535. [22] 甄永赞, 崔翔, 卢铁兵, 等. 离子流场中导体充电电位的计算[J]. 中国电机工程学报, 2011, 31(27): 8-13. Zhen Yongzan, Cui Xiang, Lu Tiebing, et al.Calculating charged electric potential of the conductor in ionized field[J]. Proceedings of the CSEE, 2011, 31(27): 8-13. [23] 齐骥. 交直流并行线路离子流与混合电场计算方法及应用研究[D]. 北京: 清华大学, 2018. [24] 李永明, 陈晓鑫, 张淮清, 等. 计及地电位升高的HVDC输电线路离子流场的计算[J]. 高压电器, 2012, 48(1): 17-24. Li Yongming, Chen Xiaoxin, Zhang Huaiqing, et al.Calculation of ion current field under HVDC transmission line considering ground potential rise[J]. High Voltage Apparatus, 2012, 48(1): 17-24. [25] 周象贤. 高压交直流并行线路离子流场的计算方法研究及其应用[D]. 北京: 华北电力大学, 2013.