Stress and Temperature Rise of High Speed Surface-Mounted Permanent Magnet Rotor with Different Protection Types
Zhang Chao1, Chen Lixiang1, Yu Shenbo1, Sun Ning1, Wang Xiaoyu1
1. National Engineering Research Center for REPM Machine Shenyang University of Technology Shenyang 110870 China; 2. Mechanical Engineering Institute Shenyang University of Technology Shenyang 110870 China
Abstract:For the different protection type of high-speed surface-mounted permanent magnet (SMPM) rotor, an analytical calculation model for the stress calculation of SMPM rotor was established. Based on the analytical model, PM rotor with carbon fiber (CF) and titanium alloy (TA) was designed. And the analytical calculation model for different enclosure protection methods was verified by finite element method (FEM). The effects of different enclosure materials, interference, pole filler materials, and temperature on the enclosure equivalent stress were analyzed. A calculation model of eddy current loss and temperature rise of high-speed SMPM rotor was established. Eddy current loss distribution and PM temperature rise with different enclosure protection measures and different pole filler materials were studied. On this basis, the design and manufacture of a high-speed SMPM motor was designed and tested, it provides effectiveness verification of the analytical method.
张超, 陈丽香, 于慎波, 孙宁, 王晓宇. 不同保护型式下的高速表贴式永磁转子应力与温升分析[J]. 电工技术学报, 2019, 34(9): 1815-1824.
Zhang Chao, Chen Lixiang, Yu Shenbo, Sun Ning, Wang Xiaoyu. Stress and Temperature Rise of High Speed Surface-Mounted Permanent Magnet Rotor with Different Protection Types. Transactions of China Electrotechnical Society, 2019, 34(9): 1815-1824.
[1] Papini L, Raminosoa T, Gerada D, et al.A high-speed permanent-magnet machine for fault-tolerant drivetrains[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3071-3080. [2] Gerada D, Mebarki A, Brown N L, et al.High-speed electrical machines: technologies, trends, and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959. [3] Tenconi A, Vaschetto S, Vigliani A.Electrical machines for high-speed applications: design considerations and tradeoffs[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3022-3029. [4] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. Dai Xingjian, Deng Zhanfeng, Liu Gang.Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. [5] 王凤翔. 高速电机的设计特点及相关技术研究[J]. 沈阳工业大学学报, 2006, 28(3): 258-264. Wang Fengxiang.Study on design feature and related technology of high speed electrical machines[J]. Journal of Shenyang University of Technology, 2006, 28(3): 258-264. [6] 王继强, 王凤翔, 鲍文博, 等. 高速永磁电机转子设计与强度分析[J]. 中国电机工程学报, 2005, 28(15): 140-145. Wang Jiqiang, Wang Fengxiang, Bao Wenbo, et al.Rotor design and strength analysis of high speed permanent magnet machine[J]. Proceedings of the CSEE, 2005, 28(15): 140-145. [7] 程文杰, 耿海鹏, 冯圣, 等. 高速永磁同步电机转子强度分析[J]. 中国电机工程学报, 2012, 32(27): 87-95. Cheng Wenjie, Geng Haipeng, Feng Sheng, et al.Rotor strength analysis of high-speed permanent magnet synchronous motors[J]. Proceedings of the CSEE, 2012, 32(27): 87-95. [8] Binder A, Schneider T, Klohr M.Fixation of buried and surface-mounted magnets in high-speed permanent magnet synchronous machines[J]. IEEE Transactions on Industry Applications, 2006, 42(4): 1031-1037. [9] Li Weili, Qiu Hongbo, Zhang Xiaochen, et al.Influence of rotor-sleeve electromagnetic characteristics on high-speed permanent-magnet generator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3030-3037. [10] Li Weili, Qiu Hongbo, Zhang Xiaochen, et al.Analyses on electromagnetic and temperature fields of superhigh-speed permanent-magnet generator with different sleeve materials[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3056-3063. [11] 张凤阁, 杜光辉, 王天煜, 等. 高速永磁电机转子不同保护措施的强度分析[J]. 中国电机工程学报, 2013, 33(增刊1): 195-203. Zhang Fengge, Du Guanghui, Wang Tianyu, et al.Rotor strength analysis of high-speed permanent magnet under different protection measures[J]. Proceedings of the CSEE, 2013, 33(S1): 195-203. [12] 吴震宇, 曲荣海, 李健, 等. 表贴式高速永磁电机多场耦合转子设计[J]. 电机与控制学报, 2016, 20(2): 98-103. Wu Zhenyu, Qu Ronghai, Li Jian, et al.Multi-field coupling rotor design for surface-mounted high-speed permanent magnet machine[J]. Electric Machines and Control, 2016, 20(2): 98-103. [13] 孔晓光, 王凤翔, 邢军强. 高速永磁电机的损耗计算与温度场分析[J]. 电工技术学报, 2012, 27(9): 166-173. Kong Xiaoguang, Wang Fengxiang, Xing Junqiang.Losses calculation and temperature field analysis of high speed permanent magnet machine[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 166-173. [14] 万援, 崔淑梅, 吴绍朋, 等. 扁平大功率高速永磁同步电机的护套设计及其强度优化[J]. 电工技术学报, 2018, 33(1): 55-63. Wan Yuan, Cui Shumei, Wu Shaopeng, et al.Design and strength optimization of the carbon fiber sleeve of high-power high-speed PMSM with flat structure[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 55-63. [15] 沈建新, 郝鹤, 袁承. 高速永磁无刷电机转子护套周向开槽的有限元分析[J]. 中国电机工程学报, 2012, 32(36): 53-60. Shen Jianxin, Hao He, Yuan Cheng.FEA study on circumferential grooves on rotor retaining sleeve of high-speed PM brushless motors[J]. Proceedings of the CSEE, 2012, 32(36): 53-60. [16] Yamazaki K, Kanou Y.Rotor loss analysis of interior permanent magnet motors using combination of 2-D and 3-D finite element method[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1772-1775. [17] 张晓晨, 李伟力, 邱洪波, 等. 超高速永磁同步发电机的多复合结构电磁场及温度场计算[J]. 中国电机工程学报, 2011, 31(30): 85-92. Zhang Xiaochen, Li Weili, Qiu Hongbo, et al.Calculation of electromagnetic field and temperature field in super high speed permanent magnet generator with composite structures[J]. Proceedings of the CSEE, 2011, 31(30): 85-92. [18] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. Chen Ping, Tang Renyuan, Tong Wenming, et al.Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9.