A High-Accuracy Iterative Method of Characteristics without Deutsch Assumption for Calculating Ion-Flow Field of HVDC Overhead Lines
Qiao Ji1, Xu Zhiwei2, Zou Jun1, Yuan Jiansheng1
1. State Key Lab of Control and Simulation of Power Systems and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China; 2. Henan Electric Power Survey & Design Institute Zhengzhou 450007 China
Abstract:The flux tracing method is frequently applied for predicting the ion flow field of HVDC transmission lines, the error of which is mainly caused by Deutsch assumption. In this paper, a new iterative method of characteristics is proposed based on the methodology of flux lines (or characteristic lines). The directions of the characteristic lines are modified in the iterations using the updated electric field. Thus Deutsch assumption is not made for the proposed method. Results show that the present method has a better performance on the ground-level electric field and ion density, space charge distribution, flux conservation law and power losses. In addition, errors using two types of boundary conditions are compared and analyzed.
乔骥, 徐志威, 邹军, 袁建生. 一种消除Deutsch假设的高精度迭代特征线方法求解高压直流输电线路离子流场[J]. 电工技术学报, 2018, 33(19): 4419-4425.
Qiao Ji, Xu Zhiwei, Zou Jun, Yuan Jiansheng. A High-Accuracy Iterative Method of Characteristics without Deutsch Assumption for Calculating Ion-Flow Field of HVDC Overhead Lines. Transactions of China Electrotechnical Society, 2018, 33(19): 4419-4425.
[1] 赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2011. [2] 崔翔, 周象贤, 卢铁兵. 高压直流输电线路离子流场计算方法研究进展[J]. 中国电机工程学报, 2012, 32(36): 130-141.Cui Xiang, Zhou Xiangxian, Lu Tiebing. Recent progress in the calculation methods of ion flow field of HVDC transmission lines[J]. Proceedings of the CSEE, 2012, 32(36): 130-141. [3] 王振国, 卢铁兵, 王东来. 邻近直流导线时交流电晕电流脉冲特性试验[J]. 电工技术学报, 2017, 32(4): 170-179.Wang Zhenguo, Lu Tiebing, Wang Donglai. Experiment of AC corona current pulses when adjacent to DC conductor[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 170-179. [4] 张静岚, 符瑜科, 卢铁兵, 等. 交直流复合电压下棒-板电极起晕电压实验分析[J]. 电工技术学报, 2017, 32(4): 180-188.Zhang Jinglan, Fu Yuke, Lu Tiebing, et al. Experimental analysis on corona inception voltage of rod-plane air gaps under DC and AC composite voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 180-188. [5] Maruvada P S, Janischewskyj W. Analysis of corona losses on DC transmission lines: I-unipolar lines[J]. IEEE Transactions on Power Apparatus & Systems, 1969, PAS-88(5): 718-731. [6] 乔骥, 邹军, 袁建生, 等. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 85-91.Qiao Ji, Zou Jun, Yuan Jiansheng, et al. A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 85-91. [7] 田冀焕, 邹军, 刘杰, 等. 高压直流双回输电线路合成电场与离子流的计算[J]. 电网技术, 2008, 32(2): 61-65.Tian Jihuan, Zou Jun, Liu Jie, et al. Calculation of total electric field and ionic current density of double-circuit HVDC transmission lines[J]. Power System Technology, 2008, 32(2): 61-65. [8] 王东来, 卢铁兵, 崔翔, 等. 两回高压直流输电线路交叉跨越时地面合成电场计算[J]. 电工技术学报, 2017, 33(2): 77-84.Wang Donglai, Lu Tiebing, Cui Xiang, et al. Simulation of total electric field under the crossing of two circuit HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2017, 33(2): 77-84. [9] 中华人民共和国国家发展和改革委员会. DL/T 436—2005 高压直流架空送电线路技术导则[S]. 北京: 中国电力出版社, 2006. [10] Takuma T, Ikeda T, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Transactions on Power Apparatus & Systems, 1981, PAS-100(12): 4802-4810. [11] Lu Tiebing, Feng Han, Zhao Zhibin, et al.Analysis of the electric field and ion current density under ultrahigh-voltage direct-current transmission lines based on finite element method[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1221-1224. [12] 袁海燕, 傅正财. 基于有限元法的±800kV 特高压直流输电线路离子流场计算[J]. 电工技术学报, 2010, 25(2): 139-146.Yuan Haiyan, Fu Zhengcai. Corona ionized field analysis of ±800kV HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 139-146. [13] Huang Guodong, Ruan Jiangjun, Du Zhiye, et al.Highly stable upwind FEM for solving ionized field of HVDC transmission line[J]. IEEE Transactions on Magnetics, 2012, 48(2): 719-722. [14] Tian Yi, Huang Xinbo, Tian Wenchao.Hybrid method for calculation of ion-flow fields of HVDC transmission lines[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(5): 2830-2839. [15] 乔骥, 邹军, 袁建生, 等. 采用区域分解法与高阶单元的交直流同塔线路混合电场计算[J]. 电网技术, 2017, 41(1): 335-341.Qiao Ji, Zou Jun, Yuan Jiansheng, et al. Electric field calculation of HVAC and HVDC transmission lines on the same tower using domain decomposition method and high order element[J]. Power System Technology, 2017, 41(1): 335-341. [16] Suda T, Sunaga Y.Calculation of large ion densities under HVDC transmission lines by the finite difference method[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1896-1905. [17] Yin Han, Zhang Bo, He Jinliang, et al.Time-domain finite volume method for ion-flow field analysis of bipolar high-voltage direct current transmission lines[J]. IET Generation Transmission & Distribution, 2012, 6(8): 785-791. [18] 周象贤, 卢铁兵, 崔翔, 等. 基于有限元与有限体积法的直流输电线路合成电场计算方法[J]. 中国电机工程学报, 2011, 31(15): 127-133.Zhou Xiangxian, Lu Tiebing, Cui Xiang, et al. A hybrid method for the simulation of ion flow field of HVDC transmission lines based on finite element method and finite volume method[J]. Proceedings of the CSEE, 2011, 31(15): 127-133. [19] 孙帅, 卢铁兵, 崔翔. 交直流导线平行架设时混合电场特性分析[J]. 电工技术学报, 2017, 32(8): 138-143.Sun Shuai, Lu Tiebing, Cui Xiang. The characteristics of hybrid electric field under the DC wire parallel with the AC wire[J]. Transactions of China Electrotechnical Society, 2017, 32(8):138-143. [20] 杨帆, 代锋, 罗汉武, 等. 雾霾天气下的直流输电线路离子流场分布特性及其影响因素[J]. 电工技术学报, 2016, 31(12): 49-57.Yang Fan, Dai Feng, Luo Hanwu, et al. The distribution characteristics and factor influence of the ionized field of DC transmission lines under haze weather[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 49-57. [21] 罗兆楠, 崔翔, 甄永赞, 等. 直流线路邻近建筑物时合成电场的计算方法[J]. 中国电机工程学报, 2010, 30(15): 125-130.Luo Zhaonan, Cui Xiang, Zhen Yongzan, et al. Calculation method for the ionized field under HVDC transmission lines with building nearby[J]. Proceedings of the CSEE, 2010, 30(15): 125-130. [22] 杨勇, 陆家榆, 雷银照. 极导线垂直排列直流线路地面合成电场的一种计算方法[J]. 中国电机工程学报, 2007, 27(21): 13-18.Yang Yong, Lu Jiayu, Lei Yinzhao. A calculation method for the total electric field strength at the ground level under vertical bipolar HVDC transmission lines[J]. Proceedings of the CSEE, 2007, 27(21): 13-18. [23] 杨勇, 陆家榆, 鞠勇. 基于Deutsch假设法和有限元法的高压直流线路地面合成电场对比分析[J]. 电网技术, 2013, 37(2): 526-532.Yang Yong, Lu Jiayu, Ju Yong. Contrast and analysis on total electric field at ground level under HVDC transmission lines by Deutsch assumption-based method and finite element method[J]. Power System Technology, 2013, 37(2): 526-532. [24] Qiao Ji, Zhang Pengfei, Zhang Jiangong, et al. An iterative flux tracing method without Deutsch assumption for ion-flow field of AC/DC hybrid transmission lines[J]. IEEE Transactions on Magnetics, 2017, PP(99): 1-4. [25] Zhou Xiangxian, Cui Xiang, Lu Tiebing, et al.Spatial distribution of ion current around HVDC bundle conductors[J]. IEEE Transactions on Power Delivery, 2011, 27(1): 380-390. [26] 李敏, 曾嵘, 余占清, 等. 高海拔地区直流输电线路的电晕损耗[J]. 高电压技术, 2011, 37(3): 746-751.Li Min, Zeng Rong, Yu Zhanqing, et al. Corona loss of HVDC transmission line in high altitude area[J]. High Voltage Engineering, 2011, 37(3): 746-751.