Abstract:This paper focuses on the calculation of the ion flow field and total electric field of high voltage direct current(HVDC) transmission lines. Based on the method for calculating ion concentration in the coordinate system of the flux lines, differential equations and boundary conditions are obtained. A new method is presented, which transforms these differential equations to nonlinear algebraic equations by finite difference method. This method reduces the computational difficulty of differential equations and improves the calculation speed. In addition, it can be applied to solve both unipolar and bipolar ionic charge flow.
乔骥,邹军,袁建生,李本良. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 85-91.
Qiao Ji,Zou Jun,Yuan Jiansheng,Li benliang. A New Finite Difference Based Approach for Calculating Ion Flow Field of HVDC Transmission Lines. Transactions of China Electrotechnical Society, 2015, 30(6): 85-91.
[1] Morris R M, Morse A R, Griffin J P, et al. The corona and radio interference performance of the nelson river HVDC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1979, (6): 1924-1936. [2] Dallaire R D, Maruvada P S. Corona performance of a ±450kV bipolar DC transmission line configuration [J]. IEEE Transactions on Power Delivery, 1987, 2(2): 477-485. [3] 李敏, 余占清, 曾嵘, 等. 高海拔±800kV直流输电线路电磁环境测量[J]. 南方电网技术, 2011, 5(1): 42-45. Li Min, Yu Zhanqing, Zeng Rong, et al. Electromag- netic environment measurement of ±800kV DC trans- mission lines at high altitude[J]. Southern Power System Technology, 2011, 5(1): 42-45. [4] 傅宾兰. 葛南直流输电线路单极运行的电晕损失[J]. 电网技术, 1993, 17(3): 004. Fu Binlan. Monopolar corona loss of Gezhouba- Nanqiao HVDC transmission line[J]. Power System Technology, 1993, 17(3): 004. [5] Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines: I-unipolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969(5): 718-731. [6] Sarma M P, Janischewskyj W. Analysis of corona losses on DC transmission lines part II-bipolar lines[J]. IEEE Transactions on Power Apparatus and Systems, 1969(10): 1476-1491. [7] Corbellini U, Pelacchi P. Corona losses in HVDC bipolar lines[J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1475-1481. [8] Janischewskyj W, Cela G. Finite element solution for electric fields of coronating DC transmission lines[J]. IEEE Transactions on Power Apparatus and Systems, 1979(3): 1000-1012. [9] Lu T, Feng H, Cui X, et al. Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method[J]. IEEE Transactions on Magnetics, 2010, 46(8): 2939- 2942. [10] 袁海燕, 傅正财. 基于有限元法的±800kV特高压直流输电线路离子流场计算[J]. 电工技术学报, 2010, 25(2): 139-146. Yuan Haiyan, Fu Zhengcai. Corona ionized field analysis of ±800kV HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 139-146. [11] Li W, Zhang B, Zeng R, et al. Discussion on the deutsch assumption in the calculation of ion-flow field under HVDC bipolar transmission lines[J]. IEEE Transactions on Power Delivery, 2010, 25(4): 2759- 2767. [12] 傅宾兰. 高压直流输电线路地面合成场强与离子流密度的计算[J]. 中国电机工程学报, 1987, 7(5): 56-63. Fu Binlan. Calculation of electric field and ion current density for bipolar HVDC line[J]. Proceedings of the CSEE, 1987, 7(5): 56-63. [13] 李乐霞. 起晕电压值对直流输电线路下地面合成场强的影响分析[J]. 电气应用, 2012(16): 64-67. Li Yuexiang. Effect of onset voltage on the total electric field on the ground level of HVDC lines[J]. Electrotechnical Application, 2012(16): 64-67. [14] 李永明, 邹岸新, 徐禄文, 等. 特高压直流输电线路离子流场的有限元-积分法计算[J]. 高电压技术, 2012, 38(6): 1428-1435. Li Yongming, Zou Anxin, Xu Luwen, et al. Calcu- lation on corona ionized field of UHVDC transmission lines by finite element-integral method[J]. High Voltage Engineering, 2012, 38(6): 1428-1435.