Thermal Analysis and Experimental Study of Fully-Immersed Evaporative Cooling Switching Mode Power Supply
Wen Yingke1, 2, Ruan Lin1
1. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract:Efficient and reliable cooling technology is an urgent demand of the development of switching mode power supply to high power density. The fully-immersed evaporative cooling technology is applied to overcome the disadvantages of traditional cooling methods, such as low cooling efficiency, complex system structure and high temperature rise of the power supply. This paper took a 12V/2kW switching mode power supply as an example, described the heat dissipation principle of the fully-immersed evaporative cooling switching mode power supply, and analyzed the steady-state and dynamic thermal characteristics of the power supply theoretically. The thermal characteristics of forced air cooling and fully-immersed evaporative cooling switching mode power supply were compared by the finite element simulations and experiments. The fully-immersed evaporative cooling switching mode power supply not only has a simple cooling structure, but also has the advantages such as lower steady-state temperature rise, more uniform temperature distribution, no local hot spots and smaller thermal stress during dynamic process. The simulation and experimental results verify the correctness of the theoretical analysis, and demonstrate the feasibility and technical advantages of the application of fully-immersed evaporative cooling technology to switching mode power supply.
[1] 周志敏, 周纪海, 纪爱华. 高频开关电源设计与应用实例[M]. 北京: 人民邮电出版社, 2008. [2] 朱明璋. 基于电子元器件散热方法的研究[J]. 中国科技投资, 2014(12): 191. Zhu Mingzhang.Research on the method of heat dissipation of electronic components[J]. China Science and Technology Investment, 2014(12): 191. [3] 何文志, 丘东元, 肖文勋, 等. 高频大功率开关电源结构的热设计[J]. 电工技术学报, 2013, 28(2): 185-191, 218. He Wenzhi, Qiu Dongyuan, Xiao Wenxun, et al.Thermal design of high frequency high power switched- mode power supply[J]. Transactions of China Elec- trotechnical Society, 2013, 28(2): 185-191, 218. [4] 尹辉斌, 高学农. 电子器件散热技术现状及进展[J]. 广东化工, 2013, 40(4): 67-68. Yin Huibin, Gao Xuenong.Present situation and development of electronic device cooling techno- logy[J]. Guangdong Chemical Industry, 2013, 40(4): 67-68. [5] 唐永龙. DSP控制大功率高频水冷开关电源的设计与研究[D]. 北京: 北京工商大学, 2010. [6] 戴剑锋. 基于移相全桥150kW开关电源的控制和散热分析[D]. 北京: 北京交通大学, 2011. [7] 裴云庆, 杨旭, 王兆安. 开关稳压电源的设计和应用[M]. 北京: 机械工业出版社, 2014. [8] 曹建安, 裴云庆, 王兆安. Boost PFC电路中开关器件的损耗分析与计算[J]. 电工电能新技术, 2002, 21(1): 41-44. Cao Jianan, Pei Yunqing, Wang Zhaoan.Loss analysis and calculation of switching devices in boost PFC circuit[J]. Advanced Technology of Electrical Engineering and Energy, 2002, 21(1): 41-44. [9] 陈为, 余素胜. 不同占空比脉冲电压激励下的高频铁芯损耗[J]. 电工电能新技术, 1998(4): 14-17. Chen Wei, Yu Susheng.High-frequency core loss under different duty cycle pulse voltage excitation[J]. Advanced Technology of Electrical Engineering and Energy, 1998(4): 14-17. [10] 陈彬, 李琳, 赵志斌. 双向全桥DC-DC变换器中大容量高频变压器绕组与磁心损耗计算[J]. 电工技术学报, 2017, 32(22): 123-133. Chen Bin, Li Lin, Zhao Zhibin.Calculation of high- power high-frequency transformer's copper Loss and magnetic core loss in dual-active-bridge DC-DC converter[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 123-133. [11] 张宁, 李琳, 魏晓光. 非正弦激励下磁心损耗的计算方法及实验验证[J]. 电工技术学报, 2016, 31(17): 224-232. Zhang Ning, Li Lin, Wei Xiaoguang.Calculation method and experimental verification of core losses under non-sinusoidal excitation[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 224-232. [12] 戈现勉. 高效率LLC谐振变换器研究[D]. 杭州: 浙江大学, 2015. [13] Lu B, Liu W, Liang Y, et al.Optimal design methodology for LLC resonant converter[C]//21st Aunnual IEEE Applied Power Electronics Con- ference and Exposition, Dallas, TX, USA, 2006: 10.1109/APEC.2006.1120590. [14] 顾国彪, 阮琳, 刘斐辉, 等. 蒸发冷却技术的发展、应用和展望[J]. 电工技术学报, 2015, 30(11): 1-6. Gu Guobiao, Ruan Lin, Liu Feihui, et al.Deve- lopments, applications and prospects of evaporative cooling technology[J]. Transactions of China Electro- technical Society, 2015, 30(11): 1-6. [15] 杨世铭, 陶文铨. 传热学[M]. 4版. 高等教育出版社, 2006. [16] 李辉, 胡姚刚, 刘盛权, 等. 计及焊层疲劳影响的风电变流器IGBT模块热分析及改进热网络模型[J]. 电工技术学报, 2017, 32(13): 80-87. Li Hui, Hu Yaogang, Liu Shengquan, et al.Thermal analysis and improved thermal network model of IGBT module for wind power converter considering solder fatigue effects[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 80-87. [17] 陈国栋, 刘宏, 王江涛. 基于曲线拟合的PEBB单元散热优化设计[J]. 电工技术学报, 2016, 31(4): 71-78. Chen Guodong, Liu Hong, Wang Jiangtao.Thermal analysis and optimization of PEBB unit based on curve fitting[J]. Transactions of China Electro- technical Society, 2016, 31(4): 71-78. [18] 王永康. ANSYS Icepak 电子散热基础教程[M]. 北京: 国防工业出版社, 2016. [19] 王永康, 张义芳. ANSYS Icepak进阶应用导航案例[M]. 北京: 中国水利水电出版社, 2016. [20] 黄伟, 冯维, 王海峰, 等. 直流换流阀单元模块蒸发冷却系统的仿真分析与试验[J]. 电工技术学报, 2017, 32(2): 264-270. Huang Wei, Feng Wei, Wang Haifeng, et al.Simulation and experimental study on the evaporative cooling system of HVDC valve unit[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 264-270.