Economical Evaluation of Wind/Hydrogen/Fuel Cell Grid-Connected System Power Smoothing Based on Improved Chemical Reaction Optimization Algorithm
Cai Guowei1, Kong Lingguo1, Xu Angxuan2, Li Zhenxin3
1. School of Electrical Engineering Northeast Dianli University Jilin 132012 China; 2. Hangzhou Power Supply Company of State Grid Zhejiang Electric Power Corporation Ltd Hangzhou 310000 China; 3. Jilin Power Supply Company of State Grid Jilin Electric Power Corporation Ltd Jilin 132010 China
Abstract:This paper studies the capacity optimization of electrolyzer and fuel cell, and analyzes the economical evaluation of the wind/hydrogen/fuel cell grid-connected system, during the output smoothing process of the generated power of wind/hydrogen/fuel cell grid-connected system. Economical evaluation scheme for power smoothing of the wind/hydrogen/fuel cell grid-connected system is proposed, based on the improved chemical reaction optimization algorithm, according to the feature that particle swarm optimization algorithm and chemical reaction optimization algorithm complement each other. Taken the maximum profit as an objective, the objective function and its constraint condition are established, considering the subjected capacity of electrolyzer and fuel cell, environmental benefit, government subsidy and time value of capital. The objective function is solved using the improved chemical reaction optimization algorithm. According to the actual measured wind speed data obtained from Daan wind plant of Jilin province, sample calculation analysis is implemented. Compared with the chemical reaction optimization and particle swarm optimization algorithms, the proposed economical evaluation scheme has been evaluated.
蔡国伟, 孔令国, 徐昂翾, 李振新. 基于改进化学反应优化算法的风/氢/燃并网系统功率平滑经济性评估[J]. 电工技术学报, 2017, 32(20): 251-260.
Cai Guowei, Kong Lingguo, Xu Angxuan, Li Zhenxin. Economical Evaluation of Wind/Hydrogen/Fuel Cell Grid-Connected System Power Smoothing Based on Improved Chemical Reaction Optimization Algorithm. Transactions of China Electrotechnical Society, 2017, 32(20): 251-260.
[1] Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 569-596. [2] 田书欣, 程浩忠, 曾平良, 等. 基于调频层面的风电弃风分析[J]. 电工技术学报, 2015, 30(7): 18-26. Tian Shuxin, Cheng Haozhong, Zeng Pingliang, et al. Analysis on wind power curtailment at frequency adjustment level[J]. Transactions of China Electro- technical Society, 2015, 30(7): 18-26. [3] Shaw S, Peteves E. Exploiting synergies in European wind and hydrogen sectors: a cost-benefit assess- ment[J]. International Journal of Hydrogen Energy, 2008, 33(13): 3249-3263. [4] Troncoso E, Newborough M. Electrolysers for mitigating wind curtailment and producing ‘green’ merchant hydrogen[J]. International Journal of Hydrogen Energy, 2011, 36(1): 120-134. [5] Parissis O S, Zoulias E, Stamatakis E, et al. Integration of wind and hydrogen technologies in the power system of Corvo island, Azores: a cost-benefit analysis[J]. International Journal of Hydrogen Energy, 2011, 36(13): 8143-8151. [6] Beccali M, Brunone S, Finocchiaro P, et al. Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied Energy, 2013, 102: 534-544. [7] 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7): 2156-2164. Yuan Tiejiang, Hu Kelin, Guan Yuhang, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. High Voltage Engineering, 2015, 41(7): 2156-2164. [8] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 126-135. Cai Guowei, Kong Lingguo, Xue Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 126-135. [9] 袁铁江, 李国军, 张增强, 等. 风电-氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang, et al. Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(14): 21-30. [10] 时璟丽, 高虎, 王红芳. 风电制氢经济性分析[J]. 可再生能源, 2015, 37(2): 11-14. Shi Jingli, Gao Hu, Wang Hongfang. The economic analysis of wind power for hydrogen production[J]. Renewable Energy, 2015, 37(2): 11-14. [11] 邵志芳, 杜成刚, 俞国勤, 等. 东海风电场耦合制氢方案的可行性综合评价[J]. 电力与能源, 2012, 33(1): 52-54. Shao Zhifang, Du Chenggang, Yu Guoqin, et al. Comprehensive evaluation of feasibility for coupling to hydrogen in east china sea wind farms[J]. Power & Energy, 2012, 33(1): 52-54. [12] 王淳, 高元海. 采用最优模糊C均值聚类和改进化学反应算法的配电网络动态重构[J]. 中国电机工程学报, 2014, 34(10): 1682-1691. Wang Chun, Gao Yuanhai. Dynamic reconfiguration of distribution network based on optimal fuzzy C-means clustering and improved chemical reaction optimization[J]. Proceedings of the CSEE, 2014, 34(10): 1682-1691. [13] 王淳. 基于化学反应算法的配电网重构[J]. 电网技术, 2012, 36(5): 209-214. Wang Chun. Distribution network reconfiguration based on chemical reaction optimization[J]. Power System Technology, 2012, 36(5): 209-214. [14] 张智晟, 温令云, 李国, 等. 基于改进化学反应优化算法的电动汽车与可再生能源多目标协同调度[J]. 电网技术, 2014, 38(3): 633-637. Zhang Zhisheng, Wen Lingyun, Li Guo, et al. Multi-objective coordinated scheduling of electric vehicles and renewable generation based on improved chemical reaction optimization algorithm[J]. Power System Technology, 2014, 38(3): 633-637. [15] Lam A Y S, Li V O K. Chemical-reaction-inspired metaheuristic for optimization[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 381-399. [16] Lam A Y S, Li V O K, Yu J J Q. Real-coded chemical reaction optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(3): 339-353. [17] 孙亮, 郝国屹. 计及风电并网的电力系统随机生产模拟改进方法[J]. 东北电力大学学报, 2016, 36(3): 16-20. Sun Liang, Hao Guoyi. An improved method of probabilistic production simulation considering wind power integration[J]. Journal of Northeast Electric Power University, 2016, 36(3): 16-20. [18] Iystein Ulleberg. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. Inter- national Journal of Hydrogen Energy, 2003, 28: 21-33. [19] Guo Yifu, Chen Hanche, Wang Fucheng. The development of a hybrid PEMFC power system[J], International Journal of Hydrogen Energy, 2015, 40(13): 4630-4640. [20] 赵广震, 姜天尧, 时君友. 多酸功能化储能材料的研究进展[J]. 东北电力大学学报, 2017, 37(3): 73-82. Zhao Guangzhen, Jiang Tianyao, Shi Junyou. The research progress of polyoxometalate-functionalized energy storage materials[J]. Journal of Northeast Electric Power University, 2017, 37(3): 73-82.