电工技术学报  2016, Vol. 31 Issue (16): 189-197    DOI:
电力系统 |
考虑风速相关性的电力系统动态经济调度
杨天1, 王京波2, 宋少帅1, 刘辰遐3
1. 新能源电力系统国家重点实验室(华北电力大学) 保定 071003;
2. 燕山大学电力电子节能与传动控制河北省重点实验室 秦皇岛 066004;
3. 国网冀北电力有限公司张家口供电公司 张家口 075000
Dynamic Economic Dispatch of Power System Considering the Correlation of the Wind Speed
Yang Tian1, Wang Jingbo2, Song Shaoshuai1, Liu Chenxia3
1. State Key Lab of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China;
2. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province Yanshan University Qinhuangdao 066004 China;
3. State Grid Jibei Zhangjiakou Power Supply Company Zhangjiakou 075000 China
全文: PDF (420 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 随着并网风电场数量的增多和规模的扩大,风电功率的随机性以及各风电场之间的风速相关性对电网调度的影响不容忽视。针对多风电场的风速联合概率分布函数不易构造的问题,通过Nataf逆变换,获取具有相关性的多维风速样本。基于机会约束规划理论,建立了一定风险阈值下考虑风电成本和运行风险约束的多变量、非线性随机优化调度模型,有效地协调了系统经济性和安全性之间的矛盾。提出基于场景化理论的改进粒子群爬山混合算法用于模型求解,提高了模型求解速度并直观地反映出系统的最佳风险水平。以含风电场的IEEE 30节点系统为算例验证了所提方法的可行性和有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨天
王京波
宋少帅
刘辰遐
关键词 动态经济调度多风电场Nataf逆变换风电成本运行风险场景化粒子群算法    
Abstract:With the increasing number and scale of wind farms, the impacts arising from the uncertainty of wind power are significant. According to the difficulty in constructing the probability distribution function of multi-wind speed, the sample space of correlative wind speed is generated by Nataf inverse transformation. A nonlinear multivariable optimization model under a certain risk threshold is established, based on the theory of chance-constrained programming. The scene theory and improved particle swarm optimization algorithm are integrated to solve the model fast, saving computational time and reflecting the best risk level directly. The simulation results of IEEE 30 bus system with two wind farms indicate the feasibility and efficiency of the proposed method.
Key wordsDynamic economic dispatch    multi-wind farms    Nataf inverse transformation    wind power cost    operation risk    scenario generation    particle swarm optimization   
收稿日期: 2014-07-08      出版日期: 2016-09-01
PACS: TM734  
作者简介: 杨 天 男,1989年生,硕士,研究方向为含风电场电力系统调度运行与安全分析。E-mail: cathaywarrior@163.com(通信作者);王京波 男,1988年生,硕士,研究方向为电力系统经济运行与风险管理。E-mail: ysu_wjs@163.com
引用本文:   
杨天, 王京波, 宋少帅, 刘辰遐. 考虑风速相关性的电力系统动态经济调度[J]. 电工技术学报, 2016, 31(16): 189-197. Yang Tian, Wang Jingbo, Song Shaoshuai, Liu Chenxia. Dynamic Economic Dispatch of Power System Considering the Correlation of the Wind Speed. Transactions of China Electrotechnical Society, 2016, 31(16): 189-197.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/Y2016/V31/I16/189