电工技术学报  2018, Vol. 33 Issue (zk2): 489-498    DOI: 10.19595/j.cnki.1000-6753.tces.L80683
电力电子 |
电动汽车双向DC-DC变换器约束模型预测控制研究
肖智明, 陈启宏, 张立炎
武汉理工大学自动化学院 武汉 430070
Constrained Model Predictive Control for Bidirectional DC-DC Converter of Electric Vehicles
Xiao Zhiming, Chen Qihong, Zhang Liyan
School of Automation Wuhan University of Technology Wuhan 430070 China
全文: PDF (42346 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了提高电动汽车中双向DC-DC变换器的响应速度与可靠性,针对交错并联双向DC-DC变换器,提出基于粒子群算法优化的约束模型预测控制(MPC)。基于系统传递函数,建立双向DC-DC变换器Buck模式下的预测模型,分析约束模型预测控制算法的原理,在约束条件中加入控制变量的约束。将粒子群优化算法用于求解约束预测控制优化问题,提高优化问题的求解速度。利用Matlab/Simulink进行仿真,并搭建实验平台进行实验,分析对比约束预测控制与PI控制以及无约束预测控制的仿真和实验效果。仿真和实验结果表明:采用约束模型预测控制的变换器拥有更好的动态响应性能和稳态性能,该算法是可行与有效的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖智明
陈启宏
张立炎
关键词 双向DC-DC变换器电动汽车模型预测控制粒子群算法    
Abstract:In order to improve the response speed and reliability of bidirectional DC-DC converters in electric vehicles, a constrained model predictive control (MPC) based on particle swarm optimization was proposed to apply to interleaved parallel bidirectional DC-DC converter. Based on the system transfer function, a predictive model for bidirectional DC-DC converter in Buck mode was established. Then, the principle of the constraint model predictive control algorithm was analyzed, and added constraints to control variables. The particle swarm optimization algorithm was used to solve the constraint prediction control optimization problem so that the speed solution was improved. The simulation was carried out with Matlab/Simulink, and the experimental platform was built. The simulation results and experimental results of constraint prediction control, PI control and unconstrained predictive control were analyzed and compared. Simulation and experimental results show that the converter with constrained model predictive control has better dynamic response performance and steady state performance, and the algorithm is feasible and effective.
Key wordsBidirectional DC-DC converter    electric vehicles    constrained model predictive control    particle swarm optimization   
收稿日期: 2018-07-08      出版日期: 2019-02-15
PACS: TM46  
基金资助:国家重点研发计划资助项目(2017YFB0103001)
通讯作者: 陈启宏 男,1976年生,博士,教授,博士生导师,研究方向为新能源电力变换与控制、车用新能源动力装置与控制。E-mail: chenqh@whut.edu.cn   
作者简介: 肖智明 男,1993年生,硕士,研究方向为新能源电力变换与控制。E-mail: 773988024@qq.com
引用本文:   
肖智明, 陈启宏, 张立炎. 电动汽车双向DC-DC变换器约束模型预测控制研究[J]. 电工技术学报, 2018, 33(zk2): 489-498. Xiao Zhiming, Chen Qihong, Zhang Liyan. Constrained Model Predictive Control for Bidirectional DC-DC Converter of Electric Vehicles. Transactions of China Electrotechnical Society, 2018, 33(zk2): 489-498.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.L80683          https://dgjsxb.ces-transaction.com/CN/Y2018/V33/Izk2/489