Design of Impedance Matching Network for Electromagnetic Ultrasonic Excitation System
Liu Suzhen1, Zhang Yanwei1, Zhang Chuang1, Cai Zhichao1, Yang Qingxin1, 2
1. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus ReliabilityHebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China
Abstract:The low transduction efficiency of electromagnetic ultrasonic transducer (EMAT) is a principal factor which limits the wide application of electromagnetic ultrasonic technology. Improving the efficiency of EMAT has always been one of the most important issues in the field of electromagnetic ultrasonic. Designing suited excitation coil is a very important part in the system. The amplitude of the exciting current plays a crucial role in the production process of electromagnetic force in the specimen surface. However, due to serious non-matching of impedance between coil and power source, the current and power through the coil are not ideal. Therefore, combined with the binary encoding method, a reactance network based on the characteristics of reactive elements network can accurately realize tuning and transforming the resistance in this paper. The designed mode can match a variety of coils with different frequencies. The coil can reach the maximum power and higher amplitude of current from the power source by using this novel network, which can provide enough power to excite the EMAT. Simulation and experimental results show that the matching network can effectively improve the output efficiency of the power source within the scope of 0.5~5MHz as well as the signal-to-noise ratio and the transduction efficiency of EMAT. The design lays a foundation for follow-up studying on EMAT.
[1] Dixon S, Burrows S E, Dutton B, et al. Detection of cracks in metal sheets using pulsed laser generated ultrasound and EMAT detection[J]. Ultrasonics, 2011, 51(1): 7-16. [2] Jian X, Dixon S, Grattan K, et al. A model for pulsed Rayleigh wave and optimal EMAT design[J]. Sensors and Actuators A: Physical, 2006, 128(2): 296-304. [3] Mirkhani K, Chaggares C, Masterson C, et al. Optimal design of EMAT transmiters[J]. NDT&E International, 2004, 37(3): 181-193. [4] 刘素贞, 张闯, 金亮, 等. 电磁超声换能器的三维有限元分析[J]. 电工技术学报, 2013, 28(8): 7-12. Liu Suzhen, Zhang Chuang, Jin Liang, et al. 3D finite element analysis of electromagnetic ultrasonic trans- ducers[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 7-12. [5] 刘素贞, 李丽滨, 蔡智超, 等. 电磁超声检测系统中消除电磁干扰电路的设计[J]. 电工技术学报, 2016, 31(1): 80-84. Liu Suzhen, Li Libin, Cai Zhichao, et al. The design for electromagnetic interference eliminating circuits in electromagnetic ultrasonic testing systems[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 80-84. [6] 王淑娟, 康磊, 李智超, 等. 电磁超声换能器三维有限元分析及优化设计[J]. 中国电机工程学报, 2009, 29(30): 123-128. Wang Shujuan, Kang Lei, Li Zhichao, et al. 3-D finite element analysis and optimum design of electromagnetic acoustic transducers[J]. Proceedings of the CSEE, 2009, 29(30): 123-128. [7] 康磊, 金昱, 潘峰, 等. 曲折线圈型电磁超声表面波换能器的优化设[J]. 仪表技术与传感器, 2015, 6: 1-4. Kang Lei, Jin Yu, Pan Feng, et al. Optimal design of meander-line-coil surface wave electromagnetic acoustic transducers[J]. Instrument Technique and Sensor, 2015, 6: 1-4. [8] 黄松岭, 王坤, 赵伟. 电磁超声导波理论与应用[M]. 北京: 清华大学出版社, 2013. [9] Song Xiaochun, Wang Yawu. Effects of AC coils parameters on transduction efficiency of EMAT for steel plate inspection[J]. Mathematical Problems in Engineering, 2014(5): 396-407. [10] 黄凤英, 郭犇, 高东海, 等. 电磁超声电声转换效率的影响因素分析[J]. 工程与试验, 2013, 53(4): 1-6. Huang Fengying, Guo Ben, Gao Donghai, et al. Analysis of influencing factors in electromagnetic acoustice electro-acoustic conversion[J]. Engineering & Test, 2013, 53(4): 1-6. [11] 郝宽胜, 黄松岭, 赵伟, 等. 电磁超声换能器新型线圈阻抗及匹配电容的计算[J]. 高技术通讯, 2010, 20(8): 845-849. Hao Kuansheng, Huang Songling, Zhao Wei, et al. Calculation of coil impedance and matching capacitance for EMAT[J]. Chinese High Technology Letters, 2010, 20(8): 845-849. [12] 刘素贞, 蔡智超, 张闯, 等. 电磁声发射-电磁超声复合检测阻抗匹配分析[J]. 河北工业大学学报,2013, 42(6): 1-6. Liu Suzhen, Cai Zhichao, Zhang Chuang, et al. The impedance matching of integrating electromagneti- cally induced acoustic emission with electromagnetic acoustic testing[J]. Journal of Hebei University of Technology, 2013, 42(6): 1-6. [13] 朱昌平, 陈兆华, 冯若, 等. 超声换能器的宽带阻抗匹配器研究[J]. 声学技术, 1994, 13(2): 79-81. Zhu Changping, Chen Zhaohua, Feng Ruo, et al. Study on broad-band match for ultrasonic trans- ducer[J]. Technical Acoustics, 1994, 13(2): 79-81. [14] Garcia-Rodriguez M, Garcia-Alvarez J, Yanez Y, et al. Low cost matching network for ultrasonic trans- ducers[J]. Physics Procedia, 2010, 3(1): 1025-1031. [15] 康磊, 王淑娟, 翟国富. 用于电磁超声检测系统的宽带匹配电路的设计[J]. 仪表技术与传感器, 2007, 4(4): 50-52. Kang Lei, Wang Shujuan, Zhai Guofu. Design of broadband matching circuit for EMAT detecting system[J]. Instrument Technique and Sensor, 2007, 4(4): 50-52. [16] 刘岚, 聂丹. 分立元件的匹配网络的设计及仿真[J]. 信息技术, 2004, 28(4): 58-60. Liu Lan, Nie Dan. Design and simulation of matching networks using discrete components[J]. Information Technology, 2004, 28(4): 58-60. [17] 谭坚文, 廖瑞金, 邓思建, 等. 高强度聚焦超声换能器的宽带阻抗匹配[J]. 电工技术学报, 2014, 29(11): 141-146. Tan Jianwen, Liao Ruijin, Deng Sijian, et al. Broadband impedance matching for high intensity focused ultrasound transducer[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 141- 146.