Abstract:Micro and small scale compressed air energy storage (CAES) is an environmental friendly and promising energy saving method. For optimizing the control strategy of motor, this paper analyzed the characteristics of electromechanical conversion of the storage system, and then proposed a hybrid control strategy based on the maximum power point tracking and maximum efficiency point tracking. A simulation model was developed by energetic macroscopic representation (EMR) to analysis the working processes of system, according to various transformation forms of energy. This paper used the maximum power point tracking, maximum efficiency point tracking and the hybrid control of these two methods as the control strategy for system simulation. Comparisons of the simulation results show that energy conversion and storage performance can be effectively improved by adopting the hybrid control method.
张立伟, 罗秋风, 安琪. 混合液气压缩储能机电系统控制策略[J]. 电工技术学报, 2016, 31(14): 67-74.
Zhang Liwei, Luo Qiufeng, An Qi. Control Strategy of Electromechanical System of Hydro-Pneumatic Compressed Air Storage System. Transactions of China Electrotechnical Society, 2016, 31(14): 67-74.
[1] 余志强, 张国民, 邱清泉, 等. 高温超导飞轮储能系统的发展现状[J]. 电工技术学报, 2013, 28(12): 109-118. Yu Zhiqiang, Zhang Guomin, Qiu Qingquan, et al. Development status of magnetic levitation flywheel energy storage system based on high-temperature superconductor[J]. Transactions of China Electro- technical Society, 2013, 28(12): 109-118. [2] 刘学, 姜新建, 张超平, 等. 大容量飞轮储能系统优化控制策略[J]. 电工技术学报, 2014, 29(3): 75-82. Liu Xue, Jiang Xinjian, Zhang Chaoping, et al. Optimization control strategies of large capacity flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 75-82. [3] 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12): 1-10. Deng Zigang, Wang Jiasu, Wang Suyu, et al. Status of high T c superconducting flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 1-10. [4] Proczka J J, Muralidharan K, Villela D, et al. Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage[J]. Energy Conversion & Management, 2013, 65: 597- 605. [5] Barrade P, Delalay S, Rufer A. Direct connection of supercapacitors to photovoltaic panels with on-off maximum power point tracking[J]. IEEE Trans- actions on Sustainable Energy, 2012, 3(2): 283-294. [6] Khamis A, Badarudin Z M, Ahmad A, et al. Deve- lopment of mini scale compressed air energy storage system[C]//2011 IEEE First Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, 2011: 151-156. [7] 张莉, 吴延平, 李琛, 等. 基于超级电容器储能系统的均压放电控制策略[J]. 电工技术学报, 2014, 29(4): 329-333. Zhang Li, Wu Yanping, Li Chen, et al. Control strategy for balanced discharge based on super- capacitor storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 329-333. [8] 丁明, 陈中, 程旭东. 级联储能变换器直流链纹波电流的抑制策略[J]. 电工技术学报, 2014, 29(2): 46-54. Ding Ming, Chen Zhong, Cheng Xudong. A scheme for suppressing DC ripple current of cascade converter for energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 46- 54. [9] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al. A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 334-340. [10] 田慧雯, 李咸善, 陈铁, 等. 基于混合储能的光伏微网孤网运行的综合控制策略[J]. 电力系统保护与控制, 2014, 42(19): 122-128. Tian Huiwen, Li Xianshan, Chen Tie, et al. Comprehensive control strategy of hybrid energy storage-based photovoltaic island microgrid[J]. Power System Protection and Control, 2014, 42(19): 122-128. [11] Martínez M, Molina M G, Frack P F, et al. Dynamic modeling, simulation and control of hybrid energy storage system based on compressed air and supercapacitors[J]. IEEE (Revista IEEE America Latina) Latin America Transactions, 2013, 11(1): 466-472. [12] 黄先进, 郝瑞祥, 张立伟, 等. 液气循环压缩空气储能系统建模与压缩效率优化控制[J]. 中国电机工程学报, 2014, 34(13): 2047-2054. Huang Xianjin, Hao Ruixiang, Zhang Liwei, et al. System modeling and compression efficiency optimal control of hydro-pneumatic cycling compressed air energy storage system[J]. Proceedings of the CSEE, 2014, 34(13): 2047-2054. [13] Kokaew V, Sharkh S M, Moshrefi-Torbati M. A hybrid method for maximum power tracking of a small scale CAES system[C]//2014 9th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Manchester, 2014: 61-66. [14] Bouscayrol A, Davat B, De Fornel B, et al. Multi-machine multi-converter system for drives: analysis of coupling by a global modeling[C]//IEEE Conference Record of Industry Applications Con- ference, Rome, Italy, 2000, 3: 1474-1481. [15] Solano-Martinez J, Boulon L, Hissel D, et al. Energetic macroscopic representation of a multiple architecture heavy duty hybrid vehicle[C]//IEEE Vehicle Power and Propulsion Conference, Dearborn, Michigan, 2009: 1322-1329. [16] Allegre A L, Bouscayrol A, Delarue P, et al. Energy storage system with supercapacitor for an innovative subway[J]. IEEE Transactions on Industrial Elec- tronics, 2010, 57(12): 4001-4012. [17] Mercieca J C, Verhille J N, Bouscayrol A. Energetic macroscopic representation of a subway traction system for a simulation model[C]//IEEE International Symposium on Industrial Electronics, Ajaccio, France, 2004, 2: 1519-1524. [18] Vas P. Vector control of AC machines[J]. Power Engineer, 1990, 6(6): 264. [19] 张磊. 压缩空气储能系统效率分析[D]. 北京: 北京交通大学, 2013.