1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China 2.Hainan Power Company Haikou 570100 China
Abstract:Among the influence factors of SF6 decomposition under partial (PD) discharge, H2O is the most significant one which affects its decomposed components, component concentration as well as the rate of gas generating. However, the influence regularity and the mechanism are still unclear recently. In this paper, SF6 decomposition testing apparatus is exploited and the experiment to simulate the influence of different H2O on the SF6 decomposition under PD is conducted in 48 hours. Gas chromatograph technology is used to detecting the content of the decomposed components and the influence regularity of H2O on SF6 characteristic decomposed components under PD is finally obtained. The study indicates that the increase of the H2O content will inhibit the generation of CF4 and CO2 while CO2 concentration is higher than CF4; H2O will promote both the generation of SO2F2 and SOF2 firstly and inhibit them afterwards, yet the promoting effect and inhibition effect on SOF2 is much stronger than SOF2. Besides, when H2O content is in low condition, the concentration ratio of SO2F2 and SOF2(φ(SO2F2)/φ (SOF2))will gradually decrease along with the increasing time of partial discharge; when H2O is relative high, the concentration ratio will gradually increase instead. Thus, H2O must be taken into consideration while using characteristic decomposed components of SF6 to diagnose electrical equipment fault.
[1] 张晓星, 姚尧, 唐炬, 等. SF6放电分解气体组份分析的现状和发展[J]. 高电压技术, 2008, 34(4): 664-669 . Zhang Xiaoxing, Yao Yao, Tang Ju, et al. Actually and perspective of proximate of SF6 decomposed products under partial discharge[J]. High Voltage Technology, 2008, 34(4): 664-669. [2] 唐炬. 组合电器局放在线监测外置传感器和复小波抑制干扰的研究[D]. 重庆大学博士论文, 2004. 5. [3] 丁繁荣, 赵学军, 张敏强.高压电气设备SF6气体危害及防范措施[J]. 电网技术, 2007, 31(S2):286-290. Ding Fanrong, Zhao Xuejun, Zhang Minqiang. Hazards of SF6 gas in power equipment on human and environment and preventive measure[J]. Power System Technology, 2007, 31(S2): 286-290. [4] R.J. Van Brunt, J. T. Herron. Fundamental processes of SF6 decomposition and oxidation in glow and corona discharges[J]. IEEE Transactions on Electrical Insulation, 1990, 25(1): 75-94. [5] 唐炬, 陈长杰, 张晓星, 等. 微氧对SF6局部放电分解特征组分的影响[J], 高电压技术. 2011, 37(1): 8-14. Tang Ju, Chen Changjie, Zhang Xiaoxing, et al. Study on the influence of trace-level O2 on SF6 decomposition characteristics under partial discharge [J]. High Voltage Technology, 2011, 37(1): 8-14. [6] GB/T18867—2002电子工业用气体六氟化硫[S]. 2002. [7] DL/T596—1996电力设备预防性试验规程[S]. 1996. [8] Catherine Pradayrol. Influence of O2 and H2O on the spark decomposition of SF6 and SF6+50% CF4 mixtures[C]. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation, Montreal, Quebec, Canada, 1996: 823-827. [9] M. Piemontesi. Analysis of decomposition products of sulfur hexafluoride in negative DC corona with special emphasis on content of H2O and O2[C]. Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, Pittsburgh, PA USA, 1994: 499-503. [10] 唐炬, 陈长杰, 刘帆, 等, 局部放电下SF6分解组分检测与绝缘缺陷编码识别[J]. 电网技术, 2011, 35(1): 110-116. Tang Ju, Chen Changjie, Lui Fan, et al. Detection of SF6 decomposition products under partial discharge and coding recognition of insulation defects[J]. Power System Technology, 2011, 35(1): 110-116. [11] 唐炬, 李涛, 胡忠, 等, 两种常见局部放电缺陷模型的SF6气体分解组分对比分析[J].高电压技术, 2009, 35(3): 487-492. Tang Ju, Li Tao, Hu Zhong, et al. Analysis of SF6 gaseous decomposition components under two kinds of PD defects[J]. High Voltage Technology, 2009, 35(3): 487-492. [12] Van Brunt R J. Production rates for oxyfluorides SOF2, SO2F2 and SOF4 in SF6 corona discharges[J]. National Bureau of Standards, Gaithersburg, 1985, 90(3): 229-253. [13] Sauers I, Adcock J L, Christophorou L G, et al. Gas phase hydrolysis of sulfur tetrafluoride.a comparison of the gaseous and liquid phase rate constants[J]. Chemical Physics, 1985, 83(11): 2618-2619. [14] Mukaiyam Y, Takagi I, Kudo A, et al. Principal decomposition by-products generated at various abnormalities in gas-insulated transformations[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 1885-1891. [15] Beyer C, Jenett H, Klockow D. Influence of reactive SFX gases on electrode surfaces after electrical discharges under SF6 atmosphere[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(4): 234-240. [16] Derdouri A, Casanovas J, Grob R, et al. Spark decomposition of SF6/H2O mixtures[J]. IEEE Transactions on Electrical Insulation 1989, 24(9): 1147-1157. [17] Derdouri A, Casanovas J, Hergli R, et al. Study of the decomposition of wet SF6 subjected to 50Hz ac corona discharges[J]. Journal of Applied Physics. 1989, 65(3): 1852-1857. [18] Irawan R, Scelsi G. Woolsey G. Continuous monitoring of SF6 degradation in high voltage switchgear using raman scattering[J]. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12(8): 815-820. [19] 唐炬, 李涛, 万凌云, 等, SF6气体分解组份的多功能试验装置研制[J].高电压技术, 2008, 34(8): 1583-1588. Tang Ju, Li Tao, Wan Lingyun, et al.Device of SF6 dissociation apparatus under partial discharge and gaseous decomposition components analysis system [J]. High Voltage Technology, 2008, 34(8): 1583- 1588. [20] 李泰君, 王章启, 张挺, 等, SF6气体水分管理标准的探讨及密度与湿度监测的研究[J], 中国电机工程学报, 2003, 23(10): 169-174. Li Taijun, Wang Zhangqi, Zhang Ting, et al. Discussion about the water vapor content standard & research on monitoring SF6 gas’s density and humidity[J]. Proceedings of the CSEE, 2003, 23(10): 169-174. [21] IEEE Std 1125—1993, IEEE Guide for moisture measurement and control in SF6 gas-insulated equipment[S]. 1993.