Abstract:On the basis of individual forecasting models, a novel combined short time forecasting model based on the maximum entropy principle is proposed. Taking the forecasting values and the historical forecasting error distributions produced by all the adopted individual power forecasting models as constraints, the new combined model calculates the weight coefficient of adopted models based on maximum entropy principle, and then the wind power forecasting results could be obtained. The wind power forecasting results of different wind turbines in different times show that the integrated model forecasting is better than individual and combined models’, and wind speed forecasting errors range between 15% and 20%, the wind power forecasting errors range between 25% and 30% and the proposed method is practical.
夏冬, 吴俊勇, 贺电, 宋洪磊, 冀鲁豫. 一种新型的风电功率预测综合模型[J]. 电工技术学报, 2011, 26(1增): 260-267.
Xia Dong, Wu Junyong, He Dian, Song Honglei, Ji Luyu. A Novel Combined Model for Wind Power Forecasting Based on Maximum Entropy Principle. Transactions of China Electrotechnical Society, 2011, 26(1增): 260-267.
[1] Alexandre Costa, Antonio Crespo, Jorge Navarro, et al. A review on the young history of the wind power short-term prediction[J].Renewable and Sustainable Energy Reviews, 2008(12): 1725-1744. [2] Ismael Sanchez. Short-term prediction of wind energy production[J]. International Journal of Forecasting, 2006(22): 43-56. [3] 王丽婕, 廖晓钟, 高阳, 等.风电场发电功率的建模和预测研究综述[J]. 电力系统保护和控制, 2009, 37(13): 118-121. Wang LIjie, Liao Xiaozhong, Gao Yang, et al. Summarization of modeling and prediction of wind power generation[J]. Power System Protection and Control, 2009, 37(13): 118-121. [4] 高阳, 陈华宇, 欧阳群. 风电场发电量预测技术研究综述[J]. 电网与清洁能源, 2010, 26(4):60-63. Gao Yan, Chen Shaoyu, O Yanqun. Summarization of forecasting technology of wind power genera- tion[J]. Power System and Clean Energy, 2010, 26(4): 60-63. [5] 韩爽. 风电场功率短期预测方法研究[D]. 北京:华北电力大学, 2008. Han Shuang. Study of Short-term Wind Power Prediction Method[D]. Beijing: North China Electric Power University, 2008. [6] 丁巧林, 潘学华, 杨薛明. 最优组合预测方法在电力负荷预测中的应用[J]. 电网技术, 2008, 32(1): 127-130. Ding Qiaolin, Pna Xuehua, Yang Xueming. Optimal combined forecasting method used in power load forecasting[J]. Power System Technology, 2008, 32(1): 127-130. [7] 姜丹. 信息论与编码[M]. 合肥: 中国科技大学出版社. 2001. [8] 石峰, 莫忠息. 信息论基础[M]. 武汉:武汉大学出版社, 2006. [9] 朱成棋, 孙宏斌, 张伯明. 基于最大信息熵原理的短期负荷预测综合模型[J]. 中国电机工程学报, 2005, 15(19): 1-5. Zhu Chengqi, Sun Hongbin, Zhang Boming. A combined model for short term load forecasting Based on maximum entropy principle[J]. Proceedings of the Chinese Society for Electrical Engineering, 2005, 15(19):1-5. [10] 曲昭伟, 姚荣涵, 王殿海. 基于最大信息熵原理的居民出行分布模型[J]. 吉林大学报(工学版), 2003, 33(2): 15-19. Qu Zhaowei, Yao Ronghan, Wang Dianhai. Inhabits trip distribution model based on maximum information entropy theory[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(2): 15-19. [11] 高峰, 康重庆, 夏清, 等. 负荷预测中多模型的自动筛选方法[J]. 电力系统自动化, 2004, 28(6): 11-13. [12] 胡毓达. 非线性规划[M]. 北京: 高等教育出版社, 1990. [13] 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程报, 2005, 25(11): 1-5. [14] 潘迪夫, 刘辉, 李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86. Pan Difu, Liu Hui, Li Yanfei. A wind speed forecasting optimization model for wind farms based on time series analysis and kalman filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86. [15] Herbert G M J, Iniyan S, Sreevalsan E.A review of wind energy technologies [J]. Renewable & Sustainable Energy Reviews, 2007, 11(6): 1117-1145.