Abstract:Accurate wind speed prediction is of great significance to the stable operation of new energy grids. In order to improve the accuracy of wind speed prediction, this paper constructs a dynamic wind speed prediction model based on double Q learning. First, build a wind speed Q learning model set consisting of 5 basic prediction algorithms, fully consider wind speed fluctuations and attribute factors, select the best prediction model for each time period through the Q learning, and get the preliminary wind speed prediction results. Calculate the prediction error based on the wind speed prediction result, construct the second-stage error Q learning model library, screen the best model in the model library to correct the preliminary prediction value, obtain the final prediction result. Finally, the effectiveness of the proposed method is verified by predicting the wind speed of the actual wind field in different seasons.
李永刚, 王月, 吴滨源. 基于双重Q学习的动态风速预测模型[J]. 电工技术学报, 2022, 37(7): 1810-1819.
Li Yonggang, Wang Yue, Wu Binyuan. Dynamic Wind Speed Prediction Model Based on Double Q Learning. Transactions of China Electrotechnical Society, 2022, 37(7): 1810-1819.
[1] 潘超, 王典, 蔡国伟, 等. 考虑风速时空相关特性的元启发式支配预测模型[J]. 电网技术, 2020, 44(11): 4105-4114. Pan Chao, Wang Dian, Cai Guowei, et al.Meta-heuristic dominance prediction model considering wind speed spatio-temporal correlation characteristics[J]. Power System Technology, 2020, 44(11): 4105-4114. [2] 杨茂, 董昊. 基于数值天气预报风速和蒙特卡洛法的短期风电功率区间预测[J]. 电力系统自动化, 2021, 45(5): 79-85. Yang Mao, Dong Hao.Short-term wind power interval prediction based on wind speed of numerical weather prediction and Monte Carlo method[J]. Automation of Electric Power Systems, 2021, 45(5): 79-85. [3] 沈小军, 周冲成, 付雪娇. 基于机联网-空间相关性权重的风电机组风速预测研究[J]. 电工技术学报, 2021, 36(9): 1782-1790. Shen Xiaojun, Zhou Chongcheng, Fu Xuejiao.Wind speed prediction of wind turbine based on the internet of machines and spatial correlation weight[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1782-1790. [4] 王晨, 寇鹏. 基于卷积神经网络和简单循环单元集成模型的风电场内多风机风速预测[J]. 电工技术学报, 2020, 35(13): 2723-2735. Wang Chen, Kou Peng.Wind speed forecasts of multiple wind turbines in a wind farm based on integration model built by convolutional neural network and simple recurrent unit[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2723-2735. [5] Ma J, Fouladirad M, Grall A.Flexible wind speed generation model: Markov chain with an embedded diffusion process[J]. Energy, 2018, 164: 316-328. [6] 凡航, 张雪敏, 梅生伟, 等. 基于时空神经网络的风电场超短期风速预测模型[J]. 电力系统自动化, 2021, 45(1): 28-35. Fan Hang, Zhang Xuemin, Mei Shengwei, et al.Ultra-short-term wind speed prediction model for wind farms based on spatiotemporal neural network[J]. Automation of Electric Power Systems, 2021, 45(1): 28-35. [7] Wang Shouxiang, Zhang Na, Wu Lei, et al.Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network[J]. Renewable Energy, 2016, 94: 629-636. [8] 王琦, 关添升, 秦本双. 基于MRMR的ORELM的短期风速预测[J]. 可再生能源, 2018, 36(1): 85-90. Wang Qi, Guan Tiansheng, Qin Benshuang.Short-term wind speed prediction of ORELM based on MRMR[J]. Renewable Energy, 2018, 36(1): 85-90. [9] Naik J, Bisoi R, Dash P K.Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression[J]. Renewable Energy, 2018, 129: 357-383. [10] 罗文, 王莉娜. 风场短期风速预测研究[J]. 电工技术学报, 2011, 26(7): 68-74. Luo Wen, Wang Lina.Research on short-term wind speed prediction in wind farms[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 68-74. [11] 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39(15): 4459-4468. Tang Zhenhao, Zhao Gengnan, Cao Shengxian, et al.Ultra-short-term wind direction prediction based on SWLSTM algorithm[J]. Proceedings of the CSEE, 2019, 39(15): 4459-4468. [12] 胡梦月, 胡志坚, 仉梦林, 等. 基于改进AdaBoost.RT和KELM的风功率预测方法研究[J]. 电网技术, 2017, 42(2): 536-542. Hu Mengyue, Hu Zhijian, Wu Menglin, et al.Research on Wind power forecasting method based on improved AdaBoost.RT and KELM algorithm[J]. Power System Technology, 2017, 42(2): 536-542. [13] 李永刚, 王月, 刘丰瑞, 等. 基于Stacking融合的短期风速预测组合模型[J]. 电网技术, 2020, 44(8): 2875-2882. Li Yonggang, Wang Yue, Liu Fengrui, et al.Combination model of short-term wind speed prediction based on Stacking fusion[J]. Power System Technology, 2020, 44(8): 2875-2882. [14] Wang Kejun, Qi Xiaoxia, Liu Hongda, et al.Deep belief network based k -means cluster approach for short-term wind power forecasting[J]. Energy, 2018, 165: 840-852. [15] 史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39(14): 4032-4042. Shi Jiaqi, Zhang Jianhua.Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39(14): 4032-4042. [16] Ouyang Tinghui, Zha Xiaoming, Qin Liang, et al.Prediction of wind power ramp events based on residual correction[J]. Renewable Energy, 2019, 136(6): 781-792. [17] 王贺, 胡志坚, 张翌晖, 等. 基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J]. 电工技术学报, 2014, 29(4): 237-245. Wang He, Hu Zhijian, Zhang Yihui, et al.Combination forecast of short-term wind speed based on clustering empirical mode decomposition and least square support vector machine[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 237-245. [18] 李奎, 李晓倍, 郑淑梅, 等. 基于BP神经网络的交流接触器剩余电寿命预测[J]. 电工技术学报, 2017, 32(15): 120-127. Li Kui, Li Xiaobei, Zheng Shumei, et al.Prediction of residual current life of AC contactors based on BP neural network[J]. Transactions of the China Electrotechnical Society, 2017, 32(15): 120-127. [19] 宋建, 束洪春, 董俊, 等. 基于GM(1,1)与BP神经网络的综合负荷预测[J]. 电力建设, 2020, 41(5): 75-80. Song Jian, Shu Hongchun, Dong Jun, et al.Comprehensive load forecasting based on GM(1,1) and BP neural network[J]. Electric Power Construction, 2020, 41(5): 75-80. [20] 李勇周, 罗大庸, 刘少强. 邻域保持最大间隔分析的人脸识别[J]. 模式识别与人工智能, 2010, 23(1):23-28. Li Yongzhou, Luo Dayong Liu Sshaoqiang Face recognition using neighborhood preserving maximal margin analysis of kernel ridge regression[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(1): 23-28. [21] Yan Jun, He Haibo, Zhong Xiangnan, et al.Q-learning-based vulnerability analysis of smart grid against sequential topology attacks[J]. IEEE Transactions on Information Forensics and Security, 2016, 12(1): 200-210. [22] Mnih V, Kavukcuoglu K, Silver D, et al.Playing atari with deep reinforcement learning[J]. Computer Science, 2013. [23] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京: 中国电力出版社, 2007. [24] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797-3802. Zhu Qiaomu, Li Hongyi, Wang Ziqi, et al.Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41(12): 3797-3802.