Abstract:In the paper, an energy management method is presented for microgrid consisting of wind power generation, diesel generator, energy storage system and sea water desalination system. Firstly, two operational modes are presented according to the operation objectives and operation characteristics of the microgrid. Secondly, a real time energy management strategy for the two modes is presented based on the super short-term wind speed prediction, which is on account of the genetic algorithm-neural network (GA-BP) prediction model. In accordance with the results of the super short-term wind speed prediction, the operational mode of the microgrid system can be confirmed, and the power limited order for the wind generation can be ensured, which can reduce the running time of diesel generator on the basis of the guarantee of the system stable operation. Lastly, using the analog-digital simulation platform built based on real time digital simulator (RTDS), a case is done to verify the control strategy of the two operational modes, which proved the validity and feasibility of the control strategy.
郭力, 王蔚, 刘文建, 焦冰琦, 王成山, 刘一欣, 王守相. 风柴储海水淡化独立微电网系统能量管理方法[J]. 电工技术学报, 2014, 29(2): 113-121.
Guo Li, Wang Wei, Liu Wenjian, Jiao Bingqi, Wang Chengshan, Liu Yixin, Wang Shouxiang. The Energy Management Method for Stand-Alone Wind/Diesel/Battery/Sea-Water Desalination Microgrid. Transactions of China Electrotechnical Society, 2014, 29(2): 113-121.
[1]Ma Qingfen, Lu Hui. Wind energy technologies integrated with desalination systems: review and state of the art[J]. Desalination, 2011,277: 274-280. [2]Lourdes Garcia-Rodriguez. Seawater desalination driven by renewable energies: a review[J]. Desalination, 2002, 143: 103-113. [3]Barklund E, Pogaku N, Prodanvic M, et al. Energy management system with stability constraints for stand-alone autonomous microgrid[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 1966-1974. [4]Wu Wei, Zhou Yayan, Lin Muhsuan, et al. Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine[J]. Energy Conversion and Management, 2013, 74: 344-352. [5]Esmail MA MOkheimer, Ahmet Z Sahin, Abdullah Al-Sharafi, et al. Modeling and optimization of hybrid wind-solar-powered reverse osmosis water desalination system in Saudi Arabia[J]. Energy Conversion and Management, 2013, 75: 86-97. [6]Qi Wei, Liu Jinfeng, Panagiotis D Christofides. Supervisory predictive control fro long-term scheduling of an integrated wind/solar energy generation and water desalination system[J]. IEEE Transactions on Control Systems Technology, 2012, 20(2): 504-512. [7]Jaganmohan Reddy Y, Pavan Kumar Y V, Sunil Kumar V, et al. Distributed ANNs in a layered architecture for energy management and maintenance scheduling of renewable energy HPS microgrids[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 316-328. [8]石庆军, 耿光超, 江全元. 独立运行模式下的微电网实时能量优化调度[J]. 中国电机工程学报, 2012, 32(16): 26-35. Shi Qingjun, Geng Guangchao, Jiang Quanyuan. Real-time optimal energy dispatch of standalone microgrid[J]. Proceeding of the CSEE, 2012, 32(16): 26-35. [9]刘梦旋, 郭力, 王成山,等. 风光柴储独立微电网系统协调运行控制策略设计[J]. 电力系统自动化, 2012, 36(15): 19-24. Liu Mengxuan, Guo Li, Wang Chengshan, et al. A coordinated operating control strategy for hybrid isolated microgrid including wind power, photovoltaic system, diesel generator and battery storage[J]. Automation of Electric Power Systems, 2012, 36(15): 19-24. [10]洪博文, 郭力, 王成山,等. 微电网多目标动态优化模型与方法[J]. 电力自动化设备, 2013, 33(3):100-107. Hong Bowen, Guo Li, Wang Chengshan, et al. Model and method of dynamic multi-objective optimal dispatch for microgrid[J]. Electric Power Automation Equipment, 2013, 33(3):100-107. [11]陈健, 王成山, 赵波 等. 考虑不同控制策略的独立型微电网优化配置[J]. 电力系统自动化, 2013, 37(11): 1-6. Chen Jian, Wang Chenshan, Zhao Bo, et al. Optimal sizing for stand-alone microgrid considering different control strategies[J]. Automation of Electric Power System, 2013, 37(11): 1-6. [12]赵波, 张雪松, 李鹏,等. 储能系统在东福山岛独立型微电网中的优化设计和应用[J]. 电力系统自动化, 2013, 37(1): 161-167. Zhao Bo, Zhang Xuesong, Li Peng, et al. Optimal design and application for energy storage system in Dongfushan island stand-alone microgrid[J]. Automa- tion of Electric Power System, 2013, 37(1): 161-167. [13]Zhang Haibo, Ge Dandan. The research and Implementation of experimental Simulation platform based on RTDS and EMS (OPEN-3000)[C]. IEEE Innovative Smart Grid Technologies-Asia (ISGT ASia), 2012: 1-4. [14]Jinhong Jeon, Jongyul Kim, Hakman Kim, et al. Development of hardware in the loop simulation system for testing operation and control functions of microgrid[J]. IEEE Transactions on Power Electronics, 2010, 25(12): 2919-2929. [15]陈妮亚, 钱政, 孟晓风,等. 基于空间相关法的风电场风速多步预测模型[J]. 电工技术学报, 2013, 28(5): 15-21. Chen Niya, Qian Zheng, Meng Xiaofeng, et al. Multi-step ahead wind speed forecast model based on spatial correlation and support vector machine[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 15-21. [16]周双喜, 鲁宗相. 风力发电与电力系统[M]. 北京: 中国电力出版社, 2011. [17]Wang Yamin, Wang Shouxiang, Zhang Na. A novel wind speed forecast method based on ensemble empirical mode decomposition and GA-BP neural network[C]. IEEE Power and Energy Society General Meeting (PES),2013: 1-5. [18]温雪春, 李正熙. 风力发电系统中风机控制策略综述[J]. 北方工业大学学报, 2011, 23(1): 60-63. Wen Xuechun, Li Zhengxi. Overview of wind turbine control strategies in wind power system[J]. Journal of North China University of Technology, 2011, 23(1): 60-63.