A Model for Electric Vehicle Charging Load Forecasting Based on Trip Chains
Chen Lidan1,2,Nie Yongquan3,Zhong Qing1
1. South China University of Technology School of Electric Power Guangzhou 510640 China; 2. Guangzhou College of South China University of Technology Guangzhou 510800 China; 3. The Hong Kong Polytechnic University Hong Kong 999077 China
Abstract:Electric vehicles(EVs) will be large-scale applications in the future, which may have an important impact on the power grid. Electric vehicle charging load forecasting is the based analysis of V2G. However there is no mature forecasting method. In this paper, a novel EV load forecasting model is formulated to investigate the effects of stochastic charging behavior on local power grid. Firstly, several geographically distinct areas are assumed according to travel purposes. Based on Markov Chain, the interrelationship of the multiple trips in one day is investigated to give detailed roadmap of daily routes. Secondly, the influence of external conditions on energy consumption is taken into account and charging criterion is determined. Then, the overall daily charging load forecast at different places is then obtained by Monte Carlo simulation. Calculation results show that electric vehicles charging load have the seasonal and holiday characteristic, the charging load make maximum load of power grid increased in a certain extent.
陈丽丹,聂涌泉,钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225.
Chen Lidan,Nie Yongquan,Zhong Qing. A Model for Electric Vehicle Charging Load Forecasting Based on Trip Chains. Transactions of China Electrotechnical Society, 2015, 30(4): 216-225.
[1] 中华人民共和国科技部. 电动汽车科技发展“十二五”专项规划[EB\OL].[2012-08-07]. http://www.gov. cn/zwgk/2012-04/20/content2118595. [2] Wu Di, Aliprantis D C, Gkritza K. Electric energy and power consumption by light-duty plug-in electric vehicles[J]. IEEE Transactions on Power Systems, 2011, 26(2): 738-746. [3] Santos A, McGuckin N, Nakamoto H Y, et al. Summary of travel trends: 2009 national household travel survey[R]. 2011. [4] 高赐威, 张亮. 电动汽车充电对电网影响的综述[J]. 电网技术, 2011, 32(2): 127-131. Gao Ciwei, Zhang Liang. A survey of influence of electric vehicle charging on power grid[J]. Power System Technology, 2011, 35(2): 127-131. [5] Pieltain Ferna X, Ndez L, Go X, et al. Assessment of the impact of plug-in electric vehicles on distribution networks[J]. IEEE Transactions on Power Systems, 2011, 26(1): 206-213. [6] 田立亭, 史双龙, 贾卓, 等. 电动汽车充电需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130. Tian Liting, Shi Shuanglong, Jia Zhuo. A statistical model for charging power demand of electric vehicles [J]. Power System Technology, 2010, 34(11): 126-130. [7] 罗卓伟, 胡泽春, 宋永华, 等. 电动汽车充电负荷计算方法[J]. 电力系统自动化, 2011, 35(14): 36-43. Luo Zhuowei, Hu Zechun, Song Yonghua, et al. Study on plug-in electric vehicles charging load calculating [J]. Automation of Electric Power Systems, 2011, 35(14): 36-42. [8] Qian Kejun, Zhou Chengke, Allan M, et al. Modeling of load demand due to EV battery charging in distribu- tion systems[J]. IEEE Transactions on Power Systems, 2011, 26(2): 802-810. [9] Darabi Z, Ferdowsi M. Aggregated impact of plug-in hybrid electric vehicles on electricity demand profile [J]. IEEE Transactions on Sustainable Energy, 2011, 2(4): 501-508. [10] 郑竞宏, 戴梦婷, 张曼, 等. 住宅区式电动汽车充电站负荷集聚特性及其建模[J]. 中国电机工程学报, 2012, 32(22): 32-38. Zheng Jinghong, Dai Mengting, Zhang Man, et al. Load cluster characteristic and modeling of EV charge station in residential district[J]. Proceedings of the CSEE, 2012, 32(22): 32-38. [11] Sungwoo Bae, Alexis Kwasinski. Spatial and temporal model of electric vehicle charging demand[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 394-403. [12] 刘鹏, 刘瑞叶, 白雪峰, 等. 基于扩散理论的电动汽车充电负荷模型[J]. 电力自动化设备, 2012, 32(9): 30-34. Liu Peng, Liu Ruiye, Bai Xuefeng, et al. Charging load model based on diffusion theory for electric vehicles[J]. Electric Power Automation Equipment, 2012, 32(9): 30-34. [13] 杨敏. 基于活动的出行链特征与出行需求分析方法研究[D]. 南京: 东南大学, 2007. [14] 胡恩平, 罗兴柏, 刘国庆. 三参数Weibull分布几种常用的参数估计方法[J]. 沈阳工业学院学报, 2000, 19(3): 89-93. Hu Enping, Luo Xingbobai, Liu Guoqing. Parameter estimating methods for the three parameters Weibull distribution[J]. Journal of Shenyang University of Technology, 2000, 19(3): 89-93. [15] U.S. Department of transportation, federal highway administration, 2009 national household travel survey [DB/OL]. URL: http://nhts.ornl.gov. [16] Frank J, Massey Jr. The kolmogorov-smirnov test for goodness of fit[J]. Journal of the American Statistical Association, 1951, 46(253): 68-78. [17] Agostino R B D, Stephens M A. Goodness of Fit Techniques[M]. Boca Raton, FL, USA: CRC Press, 1986. [18] Grahn P, Munkhammar J, Widen J, et al. PHEV home charging model based on residential activity patterns [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2507-2515. [19] Alicja L, Dorota K, Georgios P, et al. Stochastic modeling of power demand due to EVs using copula [J]. IEEE Transactions on Power Systems, 2012, 27(4): 1960-1968. [20] Rautiainen A, Repo S, Järventausta P, et al. Statistical charging load modeling of PHEVs in electricity distribution networks using national travel survey data[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1650-1659. [21] Shaaban M F, Atwa Y M, Saadany E F El. PEVs modeling and impacts mitigation in distribution networks[J]. IEEE Transactions on Power Systems, 2011, 28(2): 1122-1131. [22] Boriboonsomsin K, Barth M. Impacts of road grade on fuel consumption and carbon dioxide emissions evidenced by use of advanced navigation systems[J]. Transportation Research Record, 2011, 2139. [23] http://www. nissanusa. com/electric-cars/leaf/. [24] Urban dynamometer driving schedule(UDDS) [OL]. Available: www.epa.gov. [25] Yilmaz M, Krein P T. Review of battery charger topologies, charging power levels, and infrastructure for plug-In electric and hybrid vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2151- 2169.